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ABSTRACT

This work is primarily a study of linear pursuit-evasion games,
although several concepts and results are presented that apply to any
zero-sum two-personr differential game.

The direct method of Pontryagin, specifically dealing with linear
pursuit-evasion games, is presented and discussed. It is shown how it
applies to several information structures. An interesting question is
that of the optimality of the strategies generated. It turns out to
be closely related to the continuous limit of the discretized informa-
tion structure used, and of the induced e-strategies. It is shown that
the limit strategies are locally optimal. A condition is also found
under which there are e~strategies enjoying the same property. The
phenomenon that can prevent these strategies from being globally opti-
mal is described, providing criteria to check this optimality. An an-
alysis is given of Pshenichnyi's nonregular points, linking them with
the abnormal problem of the calculus of variations and with Isaacs'
concept of a barrier.

Pontryagin's technique is also applied to multistage games, the
main emphasis being on a system-theoretic formulation where the controls
are unbounded and the capture set is a subspace. Explicit criteria are
given for completion to be possible with the three main information
structures. Following Kalman, special attention is given to the case
where the capture subspace is a submodule of the system, and his strong
controllability theorem is generalized.

The second part of this study is an investigation of a specific
example; Isaacs' Isotropic Rocket. The previous technique is applied
to it, and readily gives interesting results. However, because of the
phenomenon mentioned above, the corresponding trajectories, Isaacs'
primaries, are not always optimal. The investigation is pursued with
the more classical Hamilton-Jacobi theory, generalized by Isaacs to a
game-theoretic form of Bellman®s dynamic programming.

The game of kind, where the payoff is capturc or escape, is first
investigated. This determines barriers that can either define a closed

capture region or represent discontinuities of the optimal time to go.

iii




The concept of cone of semipermeable directions is emphasized, and a
geometrical construction of it is given. This concept is used to pre-
sent Isaacs' "envelope barrier."” It is shown that for a certain range
of parameters this barrier does not provide the complete solution of
the game of kind. Two other semipermeable surfaces are attached to it,
which sometimes succeed in defining a closed capture region. When they
do not, two more surfaces are constructed, but they do not close the
barrier either. Two new concepts are introduced: the "envelope junc-
tion," which is a way in which two semipermeable surfaces can join at
a nonzero angle and still form a barrier, and the "singular surface,"
which is a semipermeable surface, the trajectories of which all come
together at a singular point.

Finally, the game of degree, where the payoff is the time of cap-
ture, is investigated. As was pointed out by J. V. Breakwell, the op-
timal solution involves trajectories having a state constrained arc.
The concept of singular state constraint is introduced. It is shown
that nonsingular constraints are reached and left tangentially by the
optimal trajectories. The general corner condition for differential

games is derived. It includes the "indifference condition,” two par-
ticular cases of which are Isaacs' "equivocal surface" and Breakwell's
"switch envelope." In the present game it is the latter form that oc-
curs, but the equations of the switching surface are extremely involved,
and numerical integration of them was not feasible in this study. Some
analytical results are derived on the shape of this surface, and conjec-

tures are presented on how the complete solution of the game may look.
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INTRODUCTION

This work 1s devoted to the study of linear pursuit-evasion games, a
special class of two~person zero-sum dynamical games. Dynamical games
include differential games, where a continuous system is governed by a
set of differential equations, and multistage games, where a discrete

system 1s governed hy a set of difference equations.

Problems of pursuit appeared in the Russian literature at an early
stage of development of modern control theory. A well-known example is

the pursuit problem of Kelendzeridze in the book, Mathematical Theory of

Optimal Processes, by Pontryagin, et al. But the full concept of the dif-

ferential game was first introduced by Rufus Isaacs in various Rand re-

ports as early as 1954, and in his book, Differential Games, in 1965.

The distinctive feature is that both players try to do the best
possible with no a priori knowledge of what the opponent is going to do.
A striking difference with a two-sided control problem, where one player
knows the whole future control of the other one, appears in the fact that
while Kelendzeridze was able to apply the maximum principle to the latter
case, Pontryagin (Reference [21]) investigated the use of this technique

for the former case and found that it usually does not apply.

In the zero-sum game, the only one we shall consider, there is a
performance index which one player, whom we shall cail P , for pursuer,
tries to minimize, and the other player, whom we shall call E , for
evader, tries to maximize. Therefore, we have a minimax problem very
much like the corresponding case of the classical, static, game theory of
Von Neuman -and Morgenstern. But here the game has dynamics, and the

strategies sought are closed-loop control laws,

A very important question in such games is that of the information
structure, At present, the game theoretic form of the most basic con-
cepts and tools to ﬁandle partial information~-observability, filtering
techniques--is missing or unsolved. We shall consider only deterministic
structures. It will always be assumed that both players know the state

perfectly. The information available to them on each other's control

will, however, be varied.
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In a pursuit-evasion game, the game is "completed" when the state
enters a capture set. The performance index is the time the game lasts
until completion, or 'capture." The evader tries to survive as long as
he can while the pursuer, on the contrary, strives to capture him as
quickly as possible. This type of game has provided several of Isaacs'

problems. One of these will be considered here, in the second part.

In the first three chapters, we discuss a direct method of Pontryagin,

specifically dealing with linear pursuit evasion games.,

In the first chapter, this method is introduced and discussed. It
is extended slightly to allow various information structures, differing
by the amount of information available to the pursuer on the evader's
future control, including the case where this whole future is known. The
object of this technique is to provide an "estimating function" T(z)
such that for a game starting at =z , capture is surely possible in a

time no longer than T(z) .

In the second chapter, our main objective is to study the optimality
of the process proposed by Pontryagin., We use, following Fleming and
Friedman, e-strategies, consistent with the information structure intro-
duced in the first chapter. We find a condition under which oﬁr estimat~-
ing function can be optimal with such strategies, for small enough € .
Then it is seen that, without this conditionm, T(z) can still be optimum
for the continuous process, e-strategies actually yielding capture times
arbitrarily close to it as € 1is decreased. The limit of the e-strate-
gies is investigated and characterized. It is shown, then, how the
estimating function and the corresponding strategies can still fail to be
optimal, essentially because they can lead to trajectories that would
lie inside the capture set for some time before the calculated capture
instant. A necessary and sufficient condition for this not to happen is
discussed, Finally, non-regular points are briefly investigated, and one

kind identified with Isaacs' barriers.

The third chapter is the only onec dealing with multistage games.
e~-strategies naturally lead to a discrete version of the game which is

briefly considered, mainly from the point of view of the information
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structure. This yields the concepts necessary for applying the previous
techniques to the system theoretic formulation of the multistage game,

with unbounded controls. 1In that case, the estimating function is shown
to be optimal, The particular case where the capture subspace is a sub-

module is investigated and an earlier result by Kalman {19] generalized.

The remaining three chapters deal with a specific example: Isaacs'

Isotropic Rocket Game, described in [17] and [18].

In the fourth chapter, this game is introduced, and its various
descriptions presented. Then we apply to it the method of the first
chapter, which rapidly yields an estimating function., However, this es-
timating function is not optimal in the whole state space, the condition

of Chapter Two being violated.

In the fifth chapter, we use Isaacs' technique and try to solve the
"game of kind" qualitative game, the outcome of which is capture or
escape. It turns out that Isaacs' conjectures, according to which his
solution would have been complete, are not verified for all values of
some parameters. Trying to complete this solution leads to the concept
of envelope junction, a corner condition for barriers. A new type of
barrier is also introduced, the singular barrier, where all member tra-
jectories meet at a singular point, But we have not been able to finish
the problem completely, due to the fact that the solution seems to be

linked to another unsolved problem, of the following chapter.

The sixth and last chapter deals with the "game of degree' quantita-
tive game, the outcome of which is longer or shorter capture time. It is
shown that the solution involves a "safe contact," first perceived by
J. V. Breakwell and already investigated under his supervision. The oc~
currence of this safe contact is iinked to the phenomenon pointed out in
Chapter Two, causing the estimating function to be non-optimal. Then, we
need to allow a corner in the optimal trajectories. The general corner
condition for differential games with integral payoff is derived, largely
using the concept of field, and resting upon ideas developed by Isaacs
and Breakwell. However, the partial differential equation it leads to in

this game is so complicated that we were unable to integrate it numeri-




e

cally. Some analytical results are derived concerning the qualitative

shape of its solution, and conjectures presented on how the solution of
the game may look.
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1. THE DIRECT METHOD OF PONTRYAGIN

In this chapter, we present the method developed by Pontryagin [22,
23,24] to deal with linear pursuit-evasion games. In doing so, we dis-

cuss how the method can apply to various information structures,

1.1 Statement of the Problem

In an n-dimensional Euclidean vector space E , a system is governed

by the differential equavion

dz
JE=Cz-u+v 1.1

where
z 1is the state of the system 2z € E ;
C 1is a constant nXn matrix;
u € P is a control variable chosen by the pursuer;
v € Q@ is a control variable chosen by the evader;
P and Q are closed convex subsets of E .

Admissible control functions u(+) and v(.) are measurable functions

of time, taking their values in P and Q respectively.

A given subspace L of E 1is called the geometrical space. The

orthogonal projection of E onto L is called =« .

A given closed convex subset e of L is called the capture set.
The dimension of € can be n . In that case, L = E , and the operator

it is simply the identity.
Capture 1is defined as
nz€C.

The general problem can be stated as deciding whether it is possible,
knowing the state 2z at each instant, and with some suitable information
on the evader's control, to construct a control function u(.) such that
capture will eventually occur, If this is possible, in what time, and

how should the control u be chosen?




The question of the evader's '"best" behavior will be considered

later.

1.2 Kemarks

Before going into the analysis of this problem, we shall make some

remarks about its formulation.

i) Dynamics. The dynamics described in (1.1) may seem somewhat

restrictive as compared to the more general formulation
z=Cz - Gu' +Jv' . (1.1a)

However, we restrict u' and v' +to belong to compact convex subsets,
Therefore, (1.la) is equivalent to (1.1) by letting
Gu' =u Jvt = v

and it is straightforward to see that if u' and v' belong to P' and
Q' , closed and convex in their respective spaces, u and v belong to

closed convex subsets P and Q of E .,

The use of constant sets P and Q corresponds to constant matrices
G and J , which is consistent with the fact that we take a constant

matrix C .

ii) Many-Control System. Another generalization one might want to

congider is a many-control system:

z=Cz + u1 + u2 + eee + up

P, .

uy € i

But the approach we take is essentially unsymmetric. We investigate what
can be done with the control u , knowing how the other control can act

on the system. Whether v is under the control of a single player or is

the added effcct of several players' controls makes no difference.
We can reduce this formulation to the first one, letting

-u1=u€P=—Pl

eo e = = + e +P .
u, + + up vEQ P2 q
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And notice that Q 4is still conve:x.

iii) Convexity. We insist on the compactness and convexity of the
sets P and Q because the following theory, at several points, depends
critically on it, It is, therefore, interesting to notice that, in as-
suming the convexity of these sets, there is no loss of generality. It

is a well-known fact in control theory that, for a dynamical system, any

‘point of the convex hull of a non-convex control set could be approximated

as closely as desired by chattering between n values belonging to the

control set itself,

The convexity of the capture set e 1s needed as well, and must be
regarded as a restrictive assumption. Notice that it is verified by the

interesting special case
C = {0}
which corresponds to capture being defined as

zEM LeM=E M orthogonal complement to L

1.3 The Information Structure

Following Pontryagin, we introduce a special information structure,

which we shall call the lower rule €.

At each instant t the pursuer knows the state z(t) and the

evader's control history v(t) for a time € in the future, namely
v(s) t<s<t+e written vit, t+e] .
A pursuit strategy, then, is a mapping

_ [to,to+e]
u e [to,to+e]xExQ =P

ct

wri
=— . t + 3
u u(t,z(to),v[to,to+e]) t Sttt +e

In this chapter, this definition will be enough for our purposes.

As the system is time-invariant, we can arbitrarily set to =0 .
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The question of the updating of the function U as time goes on will be

discussed in the second chapter (Section 2.3).
Three cases will be considered:

Q) € as big as desired by the pursuer. The evader's control is

known by the pursuer for the whole future.

This reduces the problem to a classical formulation, used by Kelendzeridze,
Varaiya [27], Kalman [19], and other authors. Does there exist, for
every control history v(.) a corresponding cohtrol history u(.) such

that capture occurs in finite time?

B) € 1is a given positive number, possibly very small. This is the
case considered by Pontryagin, He gives, in addition, a time of
capture valid for every positive € . This suggests the third

case:

Y) € =0: Only the present value of the evader's control is known.
This is again a classical problem, considered by Pontryagin
himself in [21,24], and other authors. This knowledge has been
found, in some cases, to be necessary for optimal strategies to

exist.

We shall consider this case as a limit of the previous one, following

Fleming [11,12,13] and Friedman [14,15].

1.4 A Sufficient Condition

We want to find a sufficient condition for capture to be possible,

and an estimatingﬁfunction

T: E-R

such that a state 2z can surely be captured in a time no longer than
T(z) . Pontryagin reaches this objective by constructing a set of cap-

turable points VT , a function of the real variable < , such that

enVv =2C
(o]




. e if zo € VT y there exists a pursuit control such that, with
o]

z(0) = Z, the solution of (1.1) verifies

z(e) € VT -
o

As a consequence of the second property, at time € there exists a new
pursuit control insuring the same inclusion at time 2¢ and so on. Thus,

eventually

Z(To) € Vo or i z(ro) € C,

Therefore, any mapping T(.) of the state space into the reals such that

[

z € VT(z)

is an estimating function,

e 6 oo i

From now on, the estimating function we consider shall always be the

t smallest real number T(z) such that the above inclusion is verified.

The construction of VT can depend on € ., We must clearly have

c
v.(e) =V_(g) Ve <S¢,V

since the control u constructed with the rule el can also be con-

structed with the rule 62 . We shall also see a construction, proposed

|
|
|

by Pontryagin, giving a set V'r valid for every positive € .

We shall actually find a family of sets WT in L, and define V_
3

as

V= ¢>(-r):r'1wT = (z|m(mz € W)

T
where &(71) = eTC is the transition matrix associated with C . We shall
have
v =C vV =(z|nz¢€Q)
o o

so that the family VT verifies the first condition = Vo =C,.
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1.5 Properties of the Sets WT

It is straightforward to verify that the solutions of (1.1) verify

T
1t =t)z(t) = 1d(7v )z () + 7 S © o(r) [v(t -r)
[o] (o] — [o]

o

w7

TTTY

- u(To-r)]dr . ‘ 1.2)

Sriary s

; To simplify the equations, we introduce the notations

u = nd(r)u P = nd(xr)P
by r
v = 10(r)v Q. = m(r)Q .
by r
Now, assume that we have the inclusion
(7t )z(0) € W_ . (1.3)
o} T

(o}

Given v[0,e] we want to be able to construct a control u[0,e] such
that

T
71 (t )z (0) +S °
o]

T ~€
[o}

T
v_(t-r)dr - S © 4 (t-r)dr € W .
r r T-€
T,"€

Sh o 3 B ia e o

Or, defining the sum of a set and a vector in the usual way

ety

3 T T

: ﬂ®(?o)z(0) + S ° vr(T-r)dr € WT_€ +-§ ° ur(T-r)dr .

4 T, € T,"€

1 Define the integral of a set Pr as the set of all possible integrals of
F functions u, taking their values in Pr . The existence of a function

u. verifying the last inclusion is equivalent to

T
n@(To)z(O) + S °

T ~€
o}

T
o

- W P dr .

Vr(T r)dr € . +-s iy

T ~€
o}

Wiy i

This must be true for every possible control v(:) , so this is equivalent

to

10
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T
K®(To)z(0) +-s °
T =€

T
dr C W ° . .
Qr r . _€-+S Prdr (1.3a)
o] 'ro-e

Finally, as we want this to be true for every point verifying (1.3), this,
in turn, is equivalent to
o %o
W cw
: F S Q dr c et S P dr , (1.4)
o T =€ ) T =€
o o

which is the characteristic property of the sets WT

1.6 Geometric Subtraction

In order to ease the handling of relation (1.4), Pontryagin intro-

duces the following operation:

Given two subsets A and B of a vectorial space, define their

geometric difference as

D=AZXB D = {z|B + z S A}
which means that D 1is the biggest set such that
D+BCA.,

If D is non-empty, we say that A star includes B : AP B ;

we say that the property of complete sweeping is verified if: A =B + D .

Proposition:

i) if A and B are convex, their geometric difference is
convex;

ji) A ¥ (B+C) = (A¥B) * c=A%B

33
@]
]
&

%
(@]

1%
[oe}

iii) (A+B) * c 2 (A*Cc) + B .

Proof:

i) Let D=AX¥B be non-empty. Let d) and d, belong to

D . By definition, for every b € B , their exists an
ai(b) € A such that

d +b+a (), 1=1,2.

11

e
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Consider d = aﬂl + (1«a)d2 and check that a(b) = aal(b)
+ (1-a)a2(b) verifies

AT T RS L

>

d+ b = a(d1+b) +-(1—a)(dé+b) =-a(b) . Yb -

4 if A 1is convex, a(b) € A and the first result is proved.
< Notice that we do not need the convexity of B . In the
sequel, however, only convex sets will be met. There is con-

, sequently no point in stating the result with more generality.

ii) Consider A = (A*B) ¥ ¢, and d € D, we have, by definition,

d € (A¥B) ¥ C<x=>d + C € (A¥B) <==> (d+C) + B S A .

Now, the addition (d+C) + B is associative; thus, the last

relation is equivalent to
d + (C+B) CA<==>d € A ¥ (C+B) ,
which proves the second result,

iii) Consider D = (A*¥C) + B, and d € D . By definition, there
exists e €A X¥C and b€B such that d = e + b . Now we

have

e+ CCA=>d+CCA+bCA+B=>dE (A+B) ¥ C

which proves the third result, Notice that it is generally
; not true that (A+B) ¥ C = (AXC) + B . It is enough, to see
it, to take B = C and a case where A ¥ C does not have

complete sweeping (see Fig. 1). However, we have the follow-

ing simple but interesting property:

Progosition:

If A 2 C has the property of complete sweeping, then this is true
for (A+B) * C and (A+B) ¥ c = (A%C) + B .

13

Proof:
: Let D = (A*C) + B .
3
: Then D+C=(A¥C) + C+ B =A+1B,

the last equality because of the assumption of complete sweeping on
3 A ¥ C . And this proves the claim.
12
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1.7 Construction of the Sets WT

Relation (1.4) can be written as

T T
w Cw +S P dr !s Qdr . 1.5)
T=-€ i€

Depending on the information structure, we can use (1.5) in different

ways. We consider the three cases of Section (1.3):

[}

@) € arbitrarily large. We can use € = 7 , and find immediately

the set we call Wiaﬂ

(9 €T . T

w =|C + P dr}| % Q dr .

T r r
o o

However, it is easy to see that this family will generally not

verify (1.4) for a smaller € . In fact, we have, using the

first proposition of Section 1.6,

(oo) =€ T i ad T

W =C+S Pdr+s P dr !S er’-*s Q dr

T Ir r r r
[o] T=€ (o] T=€

1-€ T-€ T T
2 C+S P dr -"-‘S er+s P _dr -"-‘S Q dr
r r r r
(o] o T=€ T=€
where the right hand side is the same as in (1.5). However,

because in general the addition and geometric subtraction of

T T=€
S Prdr and S Qrdr do not commute, the inclusion is
T-€ o]

strict and (1.4) violated.

This set is nevertheless very important, because only when it does
verify (1.4) is an e-strategy optimal. We shall discuss this point in
Chapter 2.

B) €_given positive. We use the induction argument of Section 1.4,
(e)

and construct the corresponding set W'r

14
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(e) € € 2¢
W = [{ ~==- C+S P dr ’—"S Q dr +S P dr
T Ir r

(o] € r

2¢ ne ne
’-"S Q dr|-==-=- +S Pdr58 Q dr ,
(n-1)e (n~L)e

ne = 1 .,

This construction is called by Pontryagin the alternating sum

of the sets

Ske ke

U = P dr and v S Q dr .

k

(k=-1)e © K )k-1)e

Our set Wie) is defined only for discrete values of <7 .

T(z) , thus, takes only discrete values, but this is not in

contradiction with our theory so far.

For the continuous case, we will use another, continuous, definition,

but this one will be used for the case of discrete systems in Chapter 3.

Y) € _goes to zero. We define a set Wio) as a limit of the pre-
vious construction. The precise topology involved is discussed
in [23] and [24]; it will be presented in Section 2.6. For the
time being, we shall consider it as a pointwise limit: every
point belongs to it which can be approximated as closely as

desired by a point of a WEE)

w© - {z
T

It clearly gives the compact set. This set is called by Pon-

. In other words,

(®,)

3z, €W T o lz - 251" -0 as & —9%} .

i

tryagin the alternating integral and denoted by

-

(o) '
wT° = Sc,o [:perr:]ar .

Notice that this is a mere notation, Pr x Qr may not exist,

(o)

and W'r still be non-empty. Again because of the properties

15
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(3)

of the geometric difference, the set WT verifies (1.4) as

soon as & < € . Thus Wéo) verifies it for every ¢ .

5) = 0 : another definition. Finally, in the case where P ¥
r

€
Qr for every r , we can consider another set family

T
LR X
W‘r C+ So (Pr Qr)dr

and verify directly that it has the required property (1.4):

T=€ N T "
wT =1{C + S (Pr-Qr)dr + S (Pr-Qr)dr
o T=€

T T
Cw +S Pdrig Q. dr .,
r r

T-€ T-€
Notice the particular feature of this construction: the exis-
tence of the corresponding family of sets W; depends only on
the existence of Pr X Qr . Therefore, if for some capture set
C this family exists, this will be true with every capture set,

including C = [0} , or capture defined as point coincidence,

Besides the point we just mentioned, the use of this definition will

be interesting in the following discussion.

1.8 Relative Size of tha W;s

(el) (e.)
Let us first compare W,r to W,r with 62 > el

(e,) € €
w2=C+Szpdr-"-‘SzQ,dr
o xr T

16
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(el)
1f €2 = 261 , the last expression is W€ . This argument used re-
2
cursively shows that, when they are both defined,
(e;) (e.))
w 2 2w 1,
T T

and thus, in the limit as € goes to zero

OB
T

T
. . (o9 (e)
Using the same calculation to compare W‘r to WT where : 1/n
it is seen that
w(oo) D W(G) .

T T

Finally, we compare W; to any er) . Using recursively the following
12

calculation:

T T
' W * Cw x
W + S (P %Q )dr e t S . P dr

T-
T T

Clw  + S P_dr 1‘8 Q dr
T=€ 1€

for T =€ , then 2¢ , and so on, shows that

wCew
T

YVe=

(e) nEN,
T

Sla

and thus, taking into account the other three inclusions derived:

(e.) (e,)
wCw®cy Yoy 2 gy,
T T T T T

If, now, we remember the definition proposed for T(z) , each of these

T

T-€

Qrdr

sets gives a corresponding estimating function, and the above inclusions

translate into

(o) 1 2 ()

T(z) >T (z) >T

(z) >T (z) >T

17
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where

T(z) = o if nd(7)z ¢ W'r Y .

The last three inequalities simply say that the time we know to be suf~-
ficient to capture increases as the amount of information available on
the evader's control decreases. This agrees with what we said in Section

1.4.

An interesting simplification occurs when Pr S>Qr for every r ,

with complete sweeping. Then, W; exists, and we have

T T T
t = * =
W S Qdr = C+ So [(Pr Q) + Qr]dr C+ s P dr

(o} 0

and thus

T T
w'=(C+S pdr)ES er=w(°°)
T I r T

(o] (o]

which, in view of the chain of inclusions derived, proves that the four
constructions give the same set W‘r , and we can use the most convenient

construction, W% , for instance,

In consequence also, the function T(z) does not depend on the in-
formation structure, Assuming more knowledge of the evader's strategy
does not allow us to improve our a priori estimate of the capture time.
However, once v{(:) 1is actually known, we might be able to take better

advantage of it and capture in a shorter time,

18
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2, OPTIMALITY

In this chapter, we address ourselves to two problems which are to a
great extent interconnected: the question of the optimality of the pro-
cess we describe, and the question of its limit as € goes to zero, what
we shall call the limit process. We shall also be obliged to introduce

the motion of regular point, and we shall make a brief analysis of non-

regular points.

2.1 The Concepts of Optimality

The approach taken so far is essentially unsymmetric. We have as-
sumed that the pursuer has an information advantage over the evader,
This allows us to ask for a strong type of optimality: we want to use

optimally the information available. We seek a function
w(t;z(t ), vit ,t +e])
! o'’ "0’ o

providing the minimum capture time over all such functions for every
admissible history v[to,t°+e] . Let J(u,v) be the actual capture
time

J(uo,v) = min J(u,v) .
u

Now, if the evader plays optimally, he will choose his control in such a
way as to maximize the above functional, so that

J(uo,vo) = max min J(u,v) .
vV u

In the classical saddle point formulation, one only seeks a control op-
timal against the opponent's saddle point control. Here, we want to know
how to modify the purster's control to take into advantage a possible
deviation of the evader from his optimal control, and we do not require
that there exist o saddle point, although we shall see further in what

sense there is one.

It is interesting at this point to review the exact relation between

the maximin operation and the saddle point.

19
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Let J(u,v) be a continuous functional:
J: PXQ-oR

where P and Q are compact subsets of topological spaces

Then J reaches its extrema on P X Q .,
Let

Arg min J(u,v) = W (v) , Arg max J(u,v) =
u€pP vEeERQ

Proposition: The existence of a saddle point:
J(u*,v) < J(u*,v*) < J(u,v*) Y(u,v) € P XQ

is equivalent to

min  max J(u,v) = max min_ J(u,v) = J(u*
WEPVER vEQUEP

0, x x 0, x *

u (v¥) = u v (u) =v

Proof: (2.1a) implies (2.1) trivially, by the definition o
Let us prove that (2.1) implies (2.la):

by definition of v° R
J(u*,vo (u*)) > J (u*,v*)
and by (2.1)
J(u*,vo(u*)) < J(u*,v*) .
Thus
J(u*,vo(u*)) = J*,vh vVt = vt

where this definition of w2 s valid, if not necessarily

let uo provide the minimax:

(]

m
"2

J(llo,\vo(uo)) S J(ui\r (u\:)) Y u

Apply this with u = u* , and use (2.2):
J(u",v*) = J(u*,vo(u*)) > J(uo,vo(uo)) .

20

A and B .
vo(u) .

2.1)
v

(2.1a)
£ uo and vo

(2.2)
unique. Now,

.
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By definition of v°
/ o *
J\uo,v (uo)) > J(uo,v )
by (2.1)
J(uo,v*) E_J(u*,v*) .
Therefore, all three inequalities reduce to equalities, proving that
min max J(u,v) = J(@¥,v¥) vo(u*) =v*,

u v

Clearly, the proof can be repeated mutis mutandis to derive the rest of

(2.1a), proving the proposition, 1f the mapping J is injective (one

to one), then we also have uo = u* y V. = v¥ uniquely.

The technique we shall use to construct the control u will be to
have the estimating function decrease as fast as possible., However, this
does not guarantee optimality with what we know of the estimating func-
tion. Actually, defined as a sufficient time for capture, it is not even
necessarily unique. We have no proof that another f(z) could not be

found, that would lead to a different strategy.

But assume now that at each instant, E can insure that capture
will not occur in a time less than T(z) . Then, having this function
decrease as fast as possible will indeed be the optimal behavior for P .

T(z) will then be said to be optimal.

Therefore, we are led to the investigation of the maximin strategies,

and of the optimality of the sufficient capture time we have displayed.

2.2 A Result by Gusyatnikov and Nikolsky

In [16], Gusyantnikov and Nikolsky give a sufficient condition for
T(z) as defined here to be optimal, by displaying a S-efficient strategy

for any positive 3§ , for the evader. This condition is the following:

Condition A:

* P, D Q'r YT , complete sweeping,
' : -v_€ep_? T . 2.3
e YucP , IVvERNQ uo= Vo € T QT Y (2.3)
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Condition A says that the element v which provides the complement v -
to uT in P'r * QT is independent of <+t . In particular, if for some

T, 0V is unique, then this v will verify (2.3) for every 7 . -

Under this condition, a $-efficient strategy is displayed, of the

form
vW = v(t,z(t ), ult ~¢,t ]
! o” ! o "o

in terms of the constant complement of u , And for every positive § ,
there is an € small enough so that this strategy insures that capture
will not occur in a time less than T(z(O)) -~ 8% . (This is the defini-
tion of a d~efficient strategy.)

We see then that it should be possible to define properly the limit
of this strategy, which would yield the capture time T(z(O)) . Actually,
we shall try to display an optimal strategy (O-efficient) with a finite

€ , the limit of which as € goes to zero will be obvious,

2.3 Jumps of the Estimating Function

To analyze the variation of the estimating function, we introduce
the concept of jumps of the estimating function (see [22] and [24]). We
know that if

then, because relation (1.3a) is verified, there exists a control u(:)

such that

z(e) € WTO_G if z(0) = zZ,

However, relation {1.3a) might be verified for some smaller < If

1 .

7. is the smallest such T for which it holds, we can find a control

)
uo(o) such that

z2(e} € W_ T(z(e)) =1 -e<T - €.
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We shall say that with the strategy v(.) , the estimating function has a
jump 8T at zo + The behavior we propose for the evader is to make this

jump as small as possible, and, if possible, zero.

At this point, a difficulty arises. At time To , the evader chooses
a control vo[to,to+e] . Assume he can choose it such that the corres-
ponding &t be null., Let tl belong to the interval (to,to+€) . From
z(tl) , under the previous controls, assume there exists a control
v'[tl,tl+e] that avoids a jump in the estimating function as well., We
are not assured that v° and v' agree on [tl,to+€] , so that although

such a control v exists, the evader might not be able to use it and

might let a non-zero jump occur,

To solve, or rather eliminate, this problem, we use Fleming's defini-
tion of a strategy (introduced in [11]). We assume that both players
choose their contrels at time to for the whole interval (to,to+e) and
play them. Consequently, the question of updating the control function at

an interior point becomes irrelevant, This is Fleming's minorant game

or Friedman's lower e~strategy (hence the terminology "lower rule € ").

A continuous strategy will be, by definition, the limit of such a process.

It was proved by Fleming [12,13] that the value of this discretized
game has a limit as € goes to zero., Moreover, this limit is the same
as the limit of the majorant game, defined in the same way but giving the
evader the information advantage (Friedman's upper e¢-strategy). Fleming's
proofs are made discretizing also the dynamics, and allowing, then, for
mixed strategies at each move (and for fixed duration games). Friedman
[14,15], generalizing a work of Varaiya and Lin, gave the proof using
continuous dynamics, and, in [15], for a class of games including ours,

wvith pure strategies,

Therefore, we know our game has a saddle point, and that the limit
of the maximin capture time is the saddle point value of the game. From

liow on, we shall investigate this lower e-strategy. We shall see under
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what conditions the evader can always prevent a Jjump., We shall take

to = 0 since the game is time-invariant,

2.4 A First Necessary Condition

i We are seeking an optimal e-strategy. If a strategy v[O,eJ is

such that, for n0(t )z € W. ,
o’ “o )

i T T

_ 0 . o

3 b1 b1t -

1 ®(To)z° + S ¢(r)v(To r)dr € int {%TO-G + s Prd%} )

T =€ ~-€
(o} TO

then, by continuity, this is true for some T smaller than To , and

there will be a jump in T(z) . Thus, a necessary condition on v is
that

T

ﬂ¢(To)Zo + S ° ¢(r)v(7°-r)dr € 5{%1 _

T =€ o
o

3 T

j + S ° p d%} . (2.4)
i3 71-¢ ¥

(o)

3 A necessary condition for this to be always possible is

T g

T T
W o+ S °  0(r)Qdr = W+ S °  0(x)Pdr . (2.5)
o o

% T =€ T =€
3 o] o

; Then, because n®(ro)zo € BWTO , W.ro is convex and IQrdr is compact,

s there always exists a control v° such that

’ T, . T
3 (1 )z + T S ° Q)v’(1 -r)dr € a(w + nS ° 0(r)Qd1}
: o O (o} w T

- o -€
To € To

E T
‘-, = a {w -c + s o ¢(r)Pdr} .
3 To T, €

Proposition: Condition (2.5) implies

24




i

T P e R AT,

SO L it S

s
g
3
3
.

TR AR TS

2

T A T R

g

it

Rt g iy

L CEC g e vt e

SMTOR

s i oo A 3

A e o]

o

prns

o e

et 9 S G imt o

T T
wT = C+ S P dr X S Qdr , complete sweeping.
o o

Proof: We first prove that the fact that it is true for every sufficiently

small ¢ , for every 1t , implies that it is true for every ¢ :

T T T-€
WT + S Qrdr (wT + S Q dr> + S Q dr
T=2€ ) =€ ¥ T=-2¢€ r

T=€ T
w + g Q dr + S P dr
=€ r r

T=2€ T~€
"T-€ T
=W 2 d;
r=2¢ + ) Pr r + S Prdr ,
T=2¢€ T=€

and this proves this first claim, Then, taking € = T , it becomes

T T
W+ S Qdr =0C +S P dr ,
T T r
o )

which proves the proposition.

In this case, thus, W:O) = wic»

exist, since we do not require that Pr E)Qr , and if it does, it may not

. But W; may be smaller or not

have complete sweeping.

2.5 Characterization of the Strategies

From the previous remarks, we can characterize the candidate optimal

strategies vo and uo . We need the following simple result:

Lemma: Let W be a closed cunvex set in a Euclidean vector space., Let

A be a closed set. Let { € oW, and let n be a normal to W
at { (normal in the definition related to convex sets; see

[26]). Finally, let A € A be such that

{n,\) = M?EXA (n,p) .

Then A €OA and & ={ + A € O(W+A) . Conversely, if ¢ €
O(W+A) , there is a normal n to W at { such that ({n,\) is

maximized.
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Proof: The first part of the claim is trivial, Let II be the tangent

hyperplane normal to n at € . Assume ¢ belongs to the in-

terior of W + A, Then, there exists a neighborhood of it con-

s

tained in W + A , which contains a &' such that

(n,é'*g) > <n,§—§) = (n,k) ’

and since &' € W+ A, there exists a €' and a ' such that,

P

gtewixleA §'=€'+X'0

Lt e oy

We have
<nok') = (nyg"g') = (nrg"g) + (n,C‘C') .

Now, because W is convex and n 1is a normal, it is an elemen-

tary property of convex sets that
(n,8-¢') >0

and consequently
(0,2} > (n,&'=¢) >(m,2)

which is in contradiction with the definition of )\ . This proves
the direct part. Conversely, let n be a normal to W+ A at

£ . Then (n,t) is maximum, and thus both (nm,A) and (n,{)
are, Hence n is normal to W at € , and the lemma is

proved,

From this fact, we infer a simple characterization of the strategy

that verifies (2.4) under condition (2.5).
o
= ¥ p . . -

Let n_ be a normal to WTo at Qo Q(To)zo Any v (.) veri

fying
%o o
(HO:“ S o(r)v (To—r)dr) = maximum

T =€
(o]

verifies (2.4), i.e., since the inner product is linear

T

g ° (no,ﬂ®(r)v°(ro—r))dr = maximum .
T =€
o
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Thus, v must verify almost everywhere in r € [TO‘G,TOJ

(n , 10 (r)v° (1 -r)) = max_ .
o ° vER
This implies, since the operator #®(r) is continuous, that vo(t) be-
longs to the boundary of Q for almost every t . This is a game theo-
retic version of Contensou's optimality principle. For instances of its

use in differential games, see [18] and [20].

Another important consequence of (2.6) is that the function vo(-)
is actually independent of € . Consequently, its limit as ¢ goes to

zero is simply its limit as t goes to zero, and is given by

* = A pii] .
v rg vmng (no, (TO)V) 2.6)
Similarly, whatever v{(¢) 1is there exists a normal n. to W,rl_,e such
that uo verifies
(ne,ﬂ¢(r)u°(71-r)) = max . (2.6a)

Notice that if v = v° , then n€ = no .

The function uo(-) depends on € and v[O,e] through n€ . How=-

ever, as € goes to zero, and consequently T to to ’ n€ tends to a

1
o
normal nG to wTo , and u (0) to an argument of the corresponding

maximum:

%X
= pr{0] .
u Arg umZxP (no, (To)u)

In particular, if n° is unique, this is independent of v , and uniquely
defined if " P is strictly convex.

2.6 Technical Results

At this point, we need some technical results. We consider the
space K of the convex compact subsets of L , and, following Pontryagin

[24], give it a metric defined by

dist (A,B) = max {dist(a,B) , dist(b,A)} .
a€A bEB
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It is easy to check that this is indeed a distance. It is stated in [24]

that with the induced topclogy, K is complete.

We also introduce the notation (1) = ﬂ¢(¢)zo ) T(zo) =1 and

for v smaller than 1 let the distance from E(t) to W be D(1):
1

= i / = 3 - —_ -
D(7) dlst\g(‘r),wT) ng%{r; le =l = [[¢ -] .

n(t) is uniquely defined in wT , due to the convexity of this set,

Lemma 1: The vector t(t1) is left differentiable at 7T = T, -

Proof: Let
A1 A
s ==Lt om-t ] b = bn)
Al A
M0 = &= [nGes0-1] 0 Sner) =t
and
INTGYD) é ;L-EW' -£ ] is a convex set.
ot TO-ST o )

Clearly, 4Of{(37) has a limit AOf = -ﬂ@(TO)Czo as BT goes to

zero and
DL ®T) = &5+ 0BT .

We also have, since 7(1) belongs to WT ,

o1

T
An(dr) € AW (BT) = (-51—-("(,r -§o) + JL'S ° Qrdr>
T o 70—51

* 1 T
T =BT
o]

This expression for AW is valid because W’r verifies (2.5).

Let KTO be the tangeni cone to WTo - Qo at the origin.
Locally, the boundary of WTO - ;o is contained between KTO
and an arbitrary, fixed cone interior to KTO . Thus, locally,

as ®t goes to zero, g? (WTO-QO) can be made arbitrarily close
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to KTO (which is invariant under scalar multiplication). Also,
the integrals can be made arbitrarily close to QTO and P,r .
o

Therefore, AW(d1) has, locally, a limit Awo :

AW =(x + Q )ip .
o T T T
o o) o)
Let Ano be the closest point of AMO to A§0 . We shall prove
that it is the limit of A :

My (dT) - Ano as 5T -0 ,

Assume ‘the above statement is false., Then, there exists an e*

positive such that for every ©&t , there is a 671 smaller than

8t , for which

_ - *
On(87)) = On lan -an Il > € .

Replacing AWO by its tangent plane at Ano , it is easy to see
that this implies that there exists a fixed £ such that

lag -, | > g -n |l + ¢ . )

Now, in view of what was said previously, we can choose dt such

that for any 871, < 51 , with Ag(arl) = Agl ,
lag -8, ]| < a
dist(Awl,AWo) <a so that dist(Ano,AWT) <a

then, since Anl provides a minimum of "Agl-An" , & € AWGTD
and with the last inequality, and the triangular inequality:

lag,-an || < 1ot ~an | + @
and therefore, with the first inequality

g ~n, | < l1ag -aq | + 20 .

Now P is a fixed number independent of €&v . Thus « can be
chosen smaller than %B , and this gives a contradiction with the

inequality (*). Therefore A&n(5t1) has a limit Ano , and we have
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Lemma 2:

Proof:

dn(r)
d;r = —Amo
=T,

and Lemma 1 is proved,
The convergence of 41 to Ano is Lipschitz in T .

The proof is elementary and cumbersome. It presents no interest

in itself and will only be sketched,

Consider first the closest point An* of AWT to A@o . It is
sufficient to prove the result for the cocnvergence of An* to
Amo , and then remark that by the convexity of AWT , On* is
closer to An than Af to A§0 .

To prove the result for An* , notice that the convergence of
AW‘r to Awo is Lipschitz, from the argument of* the fixed cwnes

presented in Lemma 1.
Then distinguish between two cases:

° Amo is not a corner point., Then show that the directions of
the normals to AWT at On* and to AWO at Ano must agree

to first order, which gives the desired result,

° Amo is a corner point. Then the result comes from simple
geometric arguments on the farthest point where An* can be,
knowing that the boundary of AW'r lies within first order
distance of the boundary of AWO .

In both cases, the result is proved.

Corollary 1: Let n(1) = §{(1) - n(v) , n(r) = “;?;7“ ; then

Proof:

° dn(T) _
N = Tar - AT]o - A§° !
T=To

and if & £0 , f(t) has a limit ﬁo , and is Lipshitz, as
5t =0 .

The first part of the claim is trivial,

Because of Lemmas 1 and 2,
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n(t) = -flo 31 + d1 8(61)

where O0(57) 1is a vector verifying ”5)(61)" =0(01) <pd7.
Thus

In(o)l = ”ﬁOHBT + BT 0(37)
and
I.10 I.10 -
A(1) = - 7o + =27 0(87) + 0(57)
”no” ”noﬂ

which proves the claim, with

Corollary 2: The distance D(1) is left differentiable at T, its

derivative is

_ db(n)

P _ = ADO = IInO" .
=T,
Proof: We have
D(1)~D(7 )
D(T) = "n('r)" , and AD(ST) = ST = = DS(:)
- "n(r)"
57T

which, with the calculation of Corollary 1, proves Corollary 2.

Remark 1l: It is easy to see, by the separation theorem for convex sets,
that n(r) is a normal to -WT . Consequently, if the normals are
unique, Lemma 1 can be proved more directly. However, we want to allow

for the case where Qo is a corner of wTo y and we need Lemma 2.

Remark 2: A proof similar to the one we gave in Lemma 1, using the same
tools, can easily be made to prove the convergence of ne to nO in the

previous section.
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2.7 Sufficiency: A Local Theorem for e-Strategies

Again, let z_ and 1 be such that T(z ) =t :
) o ) 0

C(To) = mb('ro)zo € BWTO () & WT y Vo<

Following Pshenichnyi [25], we define a regular point as a point =z

where
d
e |:e|ist(§(¢),wé\wr =-tb_#0,
(o]

and thus, this number is negative. We have seen in the previous section

that this derivative exists.

Theorem: If z0 is a regular point, under condition (£.5) the evader

can prevent a jump of the estimating function at z_ . Precisely, there
exists an eo such that for any € smaller than eo ’ T(z(e)) = TO - € .
Proof: We want to prove that using v® defined in Section 2.5 there does

not exist any T smaller than To y OT = To - Tl , such that

T T
P(t. )z + S 1 ﬂ¢(r)v°(r -g)dr € W +S 1 7 (r)Pdr
1" o 1 T, =€

Tl‘e 1 T1‘€

N1
=W + S 1 (r)Qdr . (2.8)
T

Tl-e

First, notice that by definition of To , Ot goes to zero as € does,

for any T, that would verify (2.8).

1
For every given s € [0,e], 1let r, = T < s and r, = T, = S -
Also, let v1 provide the maximum in the following product (where
v = (r)v )
r

~ 1l A
max (v_ ,A(t))) = (v ,n(x,))
vERQ ( Ty 1 ) 5 1

where n(tr) is defined as in Section 2,6. Let also ﬁ(rl) = ﬁl . Ve

have, for every s,
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(Vrl:n]_) - (Vrl’nl> < I(Vrlanl) = (Vro:no)l +

(o] o
167 48,0 = g i)l

0O - o A
I (vr )nl) (vr ’nl>|
o 1
and we show that the three differences on the right hand side are Lip-
schitz in ®t . It is obvious for the third one, and it is a consequence

of Lemma 2 in the previous section for the second one.

The first difference is the variation of the support function of

6*(ﬁ(T)|WT) .

It is proved in [26] that 8* is convex in # , and, as such, Lipschitz
at any point of the relative interior of its domain., This, together with
Lemma 2 and the obvious Lipschitz character of its dependence on WT ,
proves that this first difference has the claimed property. Consequently,

there exists an M independent of 87 such that

(vE B = (v ,8) <mer vs . 2.9)
1 1

Moreover, remember that vo(s) , and thus ﬁl and v1 , are not functions

of €. Thus M can be chosen independent of € as well.
We integrate the previous relation for s varying from O to ¢€:

T
l 1l o] A
( S [vr(rl-r) - vr(rl—r)]dr ) nl) < MedT.

-
Y

We subtract n(rl) (defined as in Section 2,6) from the left hand side
of (2.8), and project on ﬁl , a normal to le at q(Tl) , and compare

with the right hand side, using the lemma of Section 2.4, This gives
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1 o ~
<n(T1) + S v (r=r)dr , 8(1)))

Tl-e

T

T
D(Tl) - { S ! [v;(wl-r) - vg(rl—r)]dr , ﬁl)
T, "€

> ADOST + 0(812) - MedT .

But € can be chosen to make this difference positive for every &7 ,
since &7 goes to zero with € , which proves that inclusion (2.8) is not

verified. This proves the theorem.

Remark: Lemma 2 allows us to use the intermediary of the function &% ’

and thus avoids an investigation into the regularity of the function v .

Under condition (2.5) we have not only proved that the variation of
T(z) is locally optimal, but also we have the much stronger result that
there exists an e-strategy actually yielding this rate of decrease. This
may be considered as very important when it comes to the implementation

of an optimal control.

2.8 Sufficiency: A local Theorem for the Limit Process

In the previous section, we were seeking an e~strategy yielding the
time of capture T(z) . But the existence of such a strategy is not
necessary for T(z) to be optimal, It suffices to be able to find
H-efficient strategies for arbitrarily small &'s . Then, according to
our discussion of Section (2.3), T{(z) is optimal and corresponds to a

saddle point.
Consider a trajectory =z(t) , and let

2 = 1001 )z (1) 2 = ¢, € awTo T(z(O)) = 7

o
and notice that, with To -t=1,

> 3‘*
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Assume that, for every 1, 2 €W T=e< 7<% .
T T o = 0

We have:

1 1
Oz = = - - - =
T(81) Y- (zT 2, ) € 57 (WT z_ ) = AW(BT) .
o) o
It is easy to check that dist[AW(S7+e),AW(BT)] goes to zero with ¢ .
The space K beéing complete, there exists a limit
M= lim = (w - )
0 875007 TO-ST o/’
so that, in particular, our Corollary 2, Section 2.6, holds without con-

dition (2.5). The above inclusion yields

v =-u €AMW .
T T [o]
o o

With our definition of WT , the pursuer can always achieve this goal.
Thus

*
(AWO+PT )y C QT or 0 € (AWO+P'r ) = QT .
o o o o

With these definitions and remarks, we prove the following fact:

Theorem: At a regular point 2, if the origin belongs to the boundary
of (AWO+PT0) x QTo , the evadexr can insure that the estimating function

will have a jump of the order of ¢ O(e) at most.

Proof: Under the conditions of the theorem, there exists a v* such that
vE = up  cannot belong to the interior of AW
o] o] o

If the pursuer does not choose u?o such that v#o € BAWO , according

to our previous calculations z'r cannot belong to W'r for every T in

a neighborhood of To + Therefore, let us assume that u = u* . Let

v o~ u¥ = Ay €oaw .
T T o )
o o

Ayo is the limit of a function AyT belonging to AWT , of the form
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Moreover, yT can be chosen to belong to the boundary of W . Let
T

zz be a trajectory generated by a strategy (u,v) agreeing with u*,6v*

at To . For instance, u and v constant. Then

1 * 1
5= (zT-Qo) =50 (yT-CO) + 0(d1)

and thus
*
= + 0
2. =V, dt 0(d1) ,

which proves that z:

is at a distance &t 0(d1) of the boundary of
WTO—ST at most. Using the assumption that zo is regular, ADO is
defined and non-zero. The jump of the estimating function is of the
order of
L dist(z , oW ),

Tt

JA\))
o

and thus, with a given step € , this jump is of the order e 0(e) at

most. This proves the theorem.

Assume, now, that this holds in the neighborhood of a trajectory,
except, possibly, at finitely many points on any trajectory. Then, if we
decrease € , the number of steps in a given interval increases like
1/¢ . But if the jumps decrease as ¢ O(e) , the total jump during that
time goes tou cero with € . We say that, locally, we have exhibited a

S-efficient strategy for arbitrary o .

2 What remains to be done is to see whether the set family W'r has
§ the properties required by the theorem. We shall prove, in the next
section, that Pontryagin's alternating integral verifies the following

relation.

Proposition:

B ein
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where KTo is the tangent cone to W.ro - Co at the origin. Since

0€ BKTO , our previous discussion holds.

2,9 Properties of the Alternating Integral

To carry out our program, we need some preliminary definitions and

results,

Definition: A geometric difference C = A X B is said to have complete
sweeping (c.s.) in the direction of n when a boundary point of C + B

having this direction for normal is also a boundary point of A .

Notice that then all such points will have that property. Notice
also that at every boundary point of C there is at least one normal

having c.s. in its direction.

Lemma: For every set A, B and C for which this combination exists,

we have
[A+B)f0)+s)ﬁc = (A+2B) ¥ 2C

where the notation of the left hand side has an obvious meaning.

Proof: From the results of Section 1.6, we would have the left hand side

included in, or equal to, the right hand side, To prove the
equality, we prove that any boundary point of the left hand side
is a boundary point of the right hand side.

To do so, we prove that all three geometric differences have
complete sweeping in any direction in which the last one of the

left hand side has. Once this is proved, the result follows

rapidly:
Let

D, = (A+B) X c D, = (D +B) ¥c D = (A+2B) ¥ 2c .
Consider a boundary point d2 of 02 , and a normal n to D2
at d2 such that (D1+B) ¥ C has c.s. in its direction. Con-
sider then
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Because of the hypothesis of c,s, in that direction, we have

d2 + ¢ € 6(01+B)

and as n 1is also normal to D1 + B at d2 + c ,

dy=d, +c-DbE€ oD, n normal to D, at d .

By the same reasoning, we deduce that

dy+ec=-bE€ A

with d1 = d2 + 2¢c - 2b , and again using the fact that n is a

common normal, that this implies

d, € [ (a+2B) ¥ ac)

Therefore, the only thing we have left to prove is the following

proposition:

Proposition: Let n be a direction in which (D1+B) X C has c.s., then

(A+B) ¥ C and (A+2B) ¥ 2C have c.s. in that direction.

Proof: If we replace the first set of a geometric difference by a set
which has at every corresponding point of its boundary (common normal) a
bigger radius of curvature of "less acute' corner points (larger cone of

normals), no direction can lose its c.s. property.

[(A+2B) ¥ C] has this relationship with [((A+B) C) + B} , thus,
in a direction n where (D1+B) ¥ C has c.s., [(A+2B) % C] ¥ ¢ has,
too. Now, notice that (see Section 1.6) [(a+2B) X C] % c = (a+2B) % 2C .
Take a boundary point d of this set, where n 1is a normal. Let

¢ € C maximize the inner product (n,c) . Then
d + ¢ € o[(a+2B) X ¢},

and comparing the normals, it follows that
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d + 2c € 3(A+2B) .

Thus, (A+2B) % 2C has c.s. in the direction of n . Then, because of
our introductory remark, (2A+2B) ¥ 2C has, too. And by mere similitude,
(A+B) ¥ C as well,

Thus, the proposition is proved, and, consequently, the lemma.

Now, we can prove the last proposition of the previous section.
Notice that, by induction, this property is true for any alternating sum
of two sets of the form

[a+B) *0) +B) ¥ c....) +B) 2 c= (A+nB) ¥ nc n =2,

Consider the set W.ro defined by the alternating integral

T
(o] *
= pP = .
W S [P %o lur
o e,0

We have

1 1 1 (%
_ - C= - —
5T [wwo go] "<6T (wro-ar go) + o7 s Prdr>

10-81
T
* 1 S o
- - ero
o7 T ~87
o

The left hand side can be made arbitrarily close to

n~1l n-1
B ot &0 ) 2 [ T ).
&1 TO-ST 0 ot . r o1 T -87 r
o o)
T T
1 o * 1 o] _ob
+ 51 ST..151 Prdr) 57 ST..$61 Qrdr n=2
on on

which, by continuity of the geometric difference for convex sets (see

[24]) can be made arbitrarily close to

39




Fap e e sk a)
e
1

3 1 ( 1 % 1 1 1

. — W . "'g ) + - p > - - Q > + - p )! - Q )0 * e
[%T To St o n T n T n To n T

3 L - X

3 - [81 (w'ro—a'r go) + Pro] QT *

This set, in turn, can be made arbitrarily close to the right hand side
of the above inclusion.

ok R

)

TS e VAo

Thus, the distance between the two sides of this

inclusion goes to zero with 87T , and we have the property claimed:

- X
KT = (AW0+P'r ) QT
o [o] [o]

the existence of the other limits proving that AWO # E . Notice that
Awo is not necessarily a cone, but has KTo as its recession cone. The
above geometric diiference does not necessarily have complete sweeping.

It has under condition (2.5) as we saw in Section 2.6.

2,10 Sufficiency: A Global Condition

In this section, we shall assume without proof that the strategies
u* and v*

only have isolated simple jumps, so that there always exists
a left continuous definition of them at any point.

a2 ol

O oty A

Should this be not true at some point, only the strong version of

the condition derived would hold, and it would no longer imply the weak

TR

one. Notice that if such a behavior happened at more than isolated

points of a trajectory, we could always replace the "chattering" control

by an equivalent non-chattering one, due to the convexity of the control
sets.

i) The Problem. We have seen that under condition (2.5), if
T(zg)
z(e)

property, etc. However, what may happen is that

:f; ei e< T - e= To >0 .
& o} o

o
Then, the point =z

4]

: o
Ty 1 there exists an €° such that T z(e") = T, "€ Let

u

z', T(z') = T ~ e , and there exists an €' having the same

ST ol 1 L IR

1]

z(e) is such that

rL

»‘
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10 (1%)z° € W
T

o o (2.10)
@(t')z € SWT. T -1 =31>0

or a non~regular point. Otherwise our local proofs would hold in a neigh-
o)

borhood of 2z , in contradiction with the hypothesis. If we rule out,

by assumption, non-regular points of second kind (see next section), then,

as we shall see in the next proposition, relations (2.10) hold at 2°

s .

Similarly for the case of the continuous process, we have seen that
a jump would be of the order of € O(g) because the distance of z_ to
the boundary of WT is of that order. But the proof fails if z(t)
comes arbitrarily close to a point verifying (2.10).

Therefore, we must impose some conditions on points of this type.
And since z0 can be approached arbitrarily closely on the trajectory

without jumps, the only points to consider are those of the following
set F :

F =3[0 W ] N [oGr)x W 1) <° = ¢ =61 >0

being understood that this boundary is to be considered only where it
separates the intersection from a region where T(z) is in the neighbor-

hood of To .

Proposition: F 1is the union of parts of the boundary of C, and of loci

of non-regular points of first kind.

Proof: We assume that ﬂ@(r')zo € BWT, , but an arbitrarily close point
z) does not belong to any W_, , with ' in the neighborhood of 7' .
To T

This can happen in two ways:
® Either: for € sufficiently small, locally we have
awT - w'r° Yt € (1°- €, °+¢) .
Then it is easy to see that z° is non-regular at <t'; moreover,

z:. belongs to the envelope of the WT's , which will be seen to

be the characteristic property of non-regular points of first kind.

® Or else: WT is not defined in an open neighborhood of <T' . But
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if it is defined and has an interior for «t' , it is defined, by
continuity for some larger <t . The only possibility, thus, is
that ' =0 so that wT is not defined for <t < 7' . Then
w,=20C.

Therefore, the problem is reduced to checking whether the trajectories we
have defined penetrate such surfaces. In the absence of non-regular

points of second kind, we have the following result:

Theoren: The necessary and sufficient condition for the estimating func-
tion to be optimal is that the corresponding trajectories do not cross

the manifold F .

ii) Sufficient Conaitions. Sufficient conditions can be derived on

the structure of the game, not requiring the actual computation of the
trajectories. Notice that, in principle, once the sets WT are known,

the manifold F 1is known,

A first, obvious, sufficient condition is F = g . However, this
rarely happens, although one could construct examples that satisfy this

condition.

We can deduce different conditions from another idea: it suffices
to insure that a trajectory arriving at zo would lie in VT'-G a time
€ earlier, Then, there is no jump in T(z) at z° ; thus the problem
mentioned does not occur. This is what we shall call "condition B."

It is insured by the following strong version:

Let zo € F ; there exists a neighborhood of zo for which, if

g v t that

Z 04c € BWT°+6 , there is a ngrmql n_ to W, ooat zg . such tha
the corresponding u and v verify, for every normal n' to WT,
at zo,

T

1 o o ] 1 t
(n 'V (8) uT(s)) > {n V2 (s) < ))
(2.11)

Ytr=1 4+ €~-5 0<s<e

where u'(+) and v'(.) are defined similarly to uo,vo , with n' and

' . This condition, directly derived from

1o (t'+¢€) z(to-e) € WT,

+e ’
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actually means that, judged according to the sets VT, , the strategies

o ©
(u,v’) are not worse, for the evader, than the optimal pair (u',v') .

This condition is still complicated, but two interesting forms can

be derived from it, easier to check,

The first one is condition A of Gusyatnikov and Nikolsky (see Section

o
2.2), In that case, a u corresponds to vo such that
W-vlepr %q Vr
T T T T
insuring that condition B is satisfied.

The superiority of this condition is that it comes the closest to
dealing with the raw data of the problem. This point is investigated in
more detail in [16]. Its main restriction is that it requires PT ;>E>QT
for every <+t , which gives the pursuer an excessive superiority over the

evader.

Another form is the weak version of (2,11), valid with our assump-
tion on the regularity of the optimal strategies. Then (2.12) is insured
by

(n',v:,-u:,) > (n',v%,—u;,) (2.11)

which can be derived as a limit of (2.11) or by an argument similar to

that of Section 2.8, Notice that if we allow "safe contact,” then the

strict inequality in (2.11) can be replaced by "greater than or equal to.'

*

Finally, this is verified if v can be determined as a function of

x

z only, independent of T . Then, v' =v' , and as u'

provides a
minimum in the expressions of (2.12) (or (2.11)), condition B is satis-
fied. This form is also a structural cordition, not requiring that F

be explicitly found.

2.11 Non-Regular Points

i) Characterization. Since we have been obliged to assume that all

the points of our trajectories were regular, it is interesting to see in

more detail what happens at a non-regular point. (We prefer to keep the
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terminology singular for another type of point we shall introduce in

Chapter 5.)

A non-regular point, we recall, is a point where

E‘% dist(g (1) ,wT)

0 Q(To) = ﬂ¢(ro)zo € BWT

=T, 0

ZAILT S i Y i S &

C(t) € W_, Vr<<q
T o

We can easily verify the following fact:

Proposition: At a non-regular point, the gradient of the estimating

function is infinite.
Proof: Consider an inverse image z'(t) of 7(1) by
20 € oo m  1e'@) = 7.

It is possible to choose it in such a way that the limit of the line
(zo,z') does not reduce to Qo when acted upon by the operator nQ(To) .

Thus, the length of h(t) =2' - 2, verifies
ol = MDD with M) <M as T o .
Now, as h goes to zero, we have

T(z) - T(z') = 6¢ = {(V(2),h) + 0(67°)

where WVI(z) is the gradient of T(z) . Now, let fi = H%H ,

2
(V1(2),8) = ?1::())(3:1; >zt 4 060 .
[o o]

Thus, if ADO is zero, the inner product is infinite, which proves the

proposition.

ii) Classification. To go further in the analysis, it is convenient

to distinguish between two kinds of non-regular points:

e First kind: €(tr) does not penetrate WT , and more precisely,

there exists a positive € such that

k) b -
(1) £ WT Yt € (To e,10+e) T # Ty ¢

14




. ® Second kind: the above property is not verified. {(t) may either

§ belong to the boundary of WT for a finite interval in 1 , or

. penetrate into the interior of W'r .
The interest of this classification appears in the following fact:

Proposition: A non-regular point of first kind lies on the envelope of

the sets V .
T

Proof: This immediately follows from the definition, transformed in

b TEenBwh WA T FA S A

terms of =z and V .,
o} T

This envelope is clearly a discontinuity in the function T(z) .
This is consistent with our remark that the gradient of T(z) is in=-
finite. Actually, the envelope is a barrier according to Isaacs. What

we have here is a mere statement of Isaacs' envelope principle (see [18]).

iii) Properties of Barriers. Such an envelope is a closed manifold

(see also [25]). Thus, if a trajectory reaches it from regular points,

the set of regular points on this trajectory is open.

T v, ST Tl ST I 31 4 s F T e S TN

Moreover, if this trajectory comes from "outside" the barrier,
namely, from the exterior of the union of sets, the envelope of which is

the barrier, then it has a finite jump in the estimating function,

But because of the previous remark, the proof of Section 2,8 holds

along the trajectory, yielding the following result:

Theorem: Under condition B, trajectories generated by the limit process
never cross a locus of non-regular points of first kind that would induce

a jump in the estimating function.

Finally, we have the following result, not really needed in a theory

of the optimality of the process, but interesting because it corresponds

B to the cases which are usually met:

Theorem: If along a barrier as defined in this section the normal to

- WT is unique, then a trajectory generated by the limit process having a

point in the barrier lies completely in it.

Proof: At a point where the normal to WTO is unique, the cone KTo

is a half space, and its boundary the hyperplane tangent to wTo . Then

- 45
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GAWO is a hyperplane parallel to BKTO .

The fact that the point is non-regular means that
AD :.-.A - A =
o o Co 0

and since Amo lies, by definition, on BAWO , this is true also of

AQO . Now, consider
ﬂ¢(To)Z(0) = n0(t ) (cz_~u'+v’) = VTO uTo AQO .

If v* and u* are chosen according to (2.7) and (2.7a), v:o - uio
belongs to béwo . As Ago does, too, we see that n®(ro)2(0) is either

zero or parallel to BKTO , and thus to BWTO .

In both cases, this implies that éo is parallel to BVTO . As we
know that zo lies on the envelope of the family VT , We see that under

the continuous law, 2z vremains on this envelope.
This proves the theoren.

iv) Non~Regular Points of Second Kind. Non-regular points of

second kind appear as points where the estimating function has an in-

finite gradient without being discontinuous.

We propose the following example, which shows that such points can

exist, and gives scme indication of what they actually represent,

Consider a two-dimensional game where the geometrical space is the
whole state space; therefore =n =1 the identity. Let the dynamics be
defined by

- -~
C =( ) ¢, positive real numbers
o =a

and P =Q , so that 1?"r * Q'r = {0} . Finally, let the capture set C

be the disk centered at the point
o
x=0 y_-w

and of radius £ =«/h?+0?/w so that its boundary goes through the point
(1,0) .
46
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Since PT % QT = {0} , WT is constant and equal to C : with the
proposed strategles, the two players' actions cancel each other and the

state follows the free dynamics of the system. The transition matrix

of C 1is
‘a": '\:’;
e cos3 WwT -2 Siuoey g
(1) =
-0t -QT
e sin ot e cOos WT

so that for a fixed z , {(1) = ®(7)z describes a logarithmic spiral

as T variles.,

The capture circle has been chosen such that it is the osculating
circle to the spiral through that point at ¢ =1, y =0 . As a conse-
quence, this whole spiral, outside of C , is a locus of non~regular

points of second kind.
In fact, for a point
as
e cOS ws

Qs
-e sin ws

we have
e~ 0(T8) e w(t-8)
E(t) =
e-a(T-‘s) sin w(t~s)
and thus
172
D(1) = [e-zoz('r-s) + 27»c_z e-a('r-s) sin o(1-s) + %]
W
_Jazmz
w [ 2

47




WISy v

Al L

It is a simple matter to check that

1) for t<s D(1) >0, and D(s) =0
db(t) _

2) for Tt =s =0
dvt

. a2D(1) a>p() ]

3) for T=s ——%==0 and ———3—=—0f»Jaz+<n2<o,
dx drt

establishing that

1) T(z) =s

2) z 1is a non-regular point

3) it is a non-~regularity of second kind
which is what we wanted to show.

Notice that T(z) = s proves that the gradient of the estimating
function has a finite component tangent to the spiral. Since this gradi-

ent is actually infinite, it is normal to the spiral.

This finishes our discussion of non-regular points of second kind.

2.12 Conclusion

We have characterized directly the controls u® and vO , and found

a direct construction of their limits u* and v* .

An interesting feature is that while u” is, under some conditions,
optimal against every v , it was found that its limit u* often does not
depend on v . This is true if the sets WT do not present corner

points, except, possibly, for countably many values of < .
Notice also that
*
(n, 70(7) (v=0)) = ((n¢(7)) n,v-u)

where K®(T))* is the adjoint operator to n®(t) . Let, then, ) =
P *
(“°(T)) n, and it is seen that the controls u¥ and v  must be such

that




LR

i (M2@*,v*)) = min max (A2 (u,v))
u v

é - vhich bears a close resemblance to the Pontryagin Maximum Principle.
4 , Because of the possibility of the occurrence of corner points in the

1 f Sets WT , the variation of )\ may be difficult to describe. ) may even

be non-unique. And it is noteworthy that the geometric subtraction can
introduce corners without any of the constituting sets having one (and

: still without violaiing condition (2.5)).

With regard to the question of the optimality of the process de-
scribed, we have found that under condition (2.5) the time T(z) can be

optimsl for an e-strategy, and a fortiori, of course, for the limit pro-

o owhn i o

3 y cess, But this condition is not needed for the limit process, and we
have found that the alternating integral is, as far as local behavior is

concerned, the optimal capture set.

B R N i ot

s o

However, the corresponding trajectories can still fail to be op-

timal by crossing a barrier or penetrating the "non-usable part" of the

P capture set., Actually, in all instances known, it is the second phe-

e DT S R e

nomenon that occurs., As will be seen in the second part, this leads to

. state constrained optimal trajectories along a ''safe contact." Condition

{ B is sufficient to prevent this from happening.

In addition, all sufficiency conditions must exclude non-regular
peints of second kind. Apart from that, all conditions are both neces-

sary and sufficient,

- oo ss sk o 2RO s I T




3, MULTISTAGE GAMES

In this chapter, we consider multistage games, that is, games in
which the system to be controlled is in discrete time, governed by a

difference equation. We shall briefly discuss the discrete equivalent of

system (1.1), and then turn to the system theoretic formulation, with
3 unbounded controls, for which the present technique turns out to be par-

ticularly well adapted.

3 3.1 The Discrete Game

In a very classical way, the system (1.1) can be transformed into a

discrete one, letting

z(ne) 2 z2() eC =00 20
yields

z(n+l) = ¢z(n) - u(n) + v(n) (3.1)
where

u(n) € P v(n) € Q.

P and Q are compact convex sets derived from the original one idn a

trivial way. Define

P_ = n¢"P Q = nd'qQ .
n n

And as in the first chapter, consider the sets

o = (( (((C”)o)i Qo) * Pl) *Q )+ Pn—l) * 9

(9 =<\ % &
Wn =(C+1= Pi>~§(}i

(o)

n

Rt ks R e Ul a

and the sets Vn and V defined by

v = (z|ne"z € w)
n n

vi“’) = (z|1"z € wr(l°°)} .

Kl e Sty b LR v e A R

(e

n

aye the sets of capturable points,

And we claim that Vn and V
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respectively, when v(n) is known of the pursuer as step n , and when

the whole future history v(:) is known.

The proof for Vn is rigorously the same as in Chapter 1; there is

(9 .
n since the situation

is slightly different: we add steps together instead of letting the

no need to repeat it., We prove the claim for V

step grow up to the capture time.

7z (n) = 10"z(0) - 2 uk(n—l-k) + E vk(n—l-k)

k k
7T = .
K ¢ u Vi ¢y

We have

where

ne>

u

For simplicity of notation, let

?, = ﬁuk(n—l—k) 9, € szk
n 2 vk(n-l-k) ‘{/n € ka .

For capture to be possible in n steps, it is necessary and sufficient

<=
1}

that there exist a e, such that
n
¢ - c
®"z(0) cpn+1yn€ )

or equivalently, that

n | N
ﬂQZ(O)+Vn€c+:Pk'

And, for this to be possible for every Wn , it is necessary and suffi-

cient that
n - -
1(¢z(0)+:QkCC+$Pk
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or equivalently that

'z (0) € (C + Zj Pk> - z': Q

which proves the claim.

3.2 Capture with No Information on v

In the continuous case we had the possibillity of letting ¢ go to
zero, Here, if we want to have the information advantage of the pursuer
vanish, the only thing we can do is assume that he has no information on
v . Then, as we want capture to be possible whatever v is, it must be
possible if the evader plays ''as if he knew" the pursuer's control. Thus,
we are actually led to the study of the majorant game, which was not

needed in the continuous case.

By analogy with the previous constructions, we are looking fecr a

set Wn such that
n
n® z(0) € Wn (3.2)
insures that it is always possible for the pursuer to obtain

n-1
w2 eV (3.3)

and, in addition,
w = C .
Inclusion (3.3) reads
%0) ~u @ +v ) ER Yv . €Q .
n-1 n-1 n-1 n-1 n-1

Therefore

1072(0) ~u (0 +Q  CR .

equivalently

102 0) - u @ €R _ FQ
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The existence of such a u 1is equivalent to

@"z©) € B . *q
n- n-

1 ) + P (3.4)

and as this must be a consequence of (3.2),

X
fs@ % D+P . (3.4a)

1 1l n-1

More precisely, as (3.4) is a necessary and sufficient condition to in-
sure that (3.3) is possible, we replace (3.4a) by the equality, and
using it recursively together with Wo = C, define Wn :

U= (e o) )2 0) e m)n) X o) v oy

Remarks

As could be expected, Wn does not exist unless, in particular,

C $>Q0 . The relative size of the three sets Wn is easy to check:

f Cw )

n n

I

wS
n

by straightforward application of the propositions of Section 1.6, They
may also be used to establish that if Pi—l '.’E)Qi , for every non-negative

i, with P_, = C, and it P, . X Q, has complete sweeping, then
@ =w =w®
n n n °

3.3 Concluding Remarks

We have not said anything about optimality so far.

In the case of V§u$ , later referred to ass the strong controlla-
bility case, we have seen that 20"z (0) € \’n to insure z(1) € vn—l .
This corresponds to the local theorems of Chapter Two. But we have the

same "global" problem. We are not sure that the evader can simultaneously

prevent the state from penetrating every Vi of smaller index,

One should therefore either find an equivalent of condition B, but
this could be more difficult than in the continuous case, or redefine the

family Vn in such a way that \'n+1 includes all points 2z such that
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the evader cannot prevent the state from drifting in one step into V
n

simul taneously with the n-l1 previous sets Vi

We did not investigate this problem. We notice only that if VnZD
Vn_1 for every n , then the problem does nct arise, and the previous
construction yields the optimal capture time.

3.4 System Theoretic Formulation

We turn now to the discrete system with unbounded controls., We must
obviously reintroduce the matrices G and J through which they act.

We also change our notations to more traditional ones.
We deal with the system
x(k+l) = F x(k) - G u(k) + J v(k) (3.5)
where

X € X an n-dimensional vector space
F is an nXn constant matrix
u € U an m~dimensional vector space

€ V an m'-dimensional vector space

<

G and J are nXm and nXm' constant matrices.

A subspace M of X is given, and capture is defined as x € M., We
choose a complement L of M: L®M=X and we define X as the prec-

jection onto L parallel to M:
x €L x=-JxEM
and capture is equivalent to 7x =0 .

We Introduce, in addition, the notations

Pk = I range [FRG] Qk = T range [}-‘RJ] .

3 Pk and Qk are vector subspaces of L .
We can still define a geometric subtraction: given two subspaces

A and B,

1 A2B=D=(x|x+BCA).
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But this operation is now particularly simple. Two cases arise:

A=2B AXnB

A with complete sweeping

AALB AXp

@ or, equivalently, does not exist.

And finally, from the Cayley-Hamilton Theorem,

i‘:pi = range (%G, "FG, ..., 7F'G) QZj P, Y p

and similarly for the Qi's , So that we can stop all our constructions at

n steps.

3.5 Strong Controllability, Capturability and Ideal Capturability

We apply the same technique as previously, with vector subspaces.

We again have the three main information structures:

Q) Strong Controllability. The control v(k) is known for the

whole future., If the state can be brought to the origin, we

shall say, followiag Kalman [19], that it is strongly control-

lable modulo M .

We have
lm) - . i‘ =
Therefore

- . . o
wk =$pi if iji;z:qi
if Zj P, A2 : Q .

()
k
explicit condition on the coefficients of the matrices involved:

(e
wk

]
=2

The condition for the existence of W can be written as an

rank [nG;nFGE,..uFR“IG] = rank [HGEHJEHFGEKFJi...

w5 1g EKFk-lJ] .
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Notice that Wéa9 may exist (be non-empty) while a set of lower

order would not. The states of the corresponding Véqb are
still strongly controllable, since, as we saw in Section 3.1, the

argument for that case does not proceed by induction.

We find that for every k , either all states controllable with

B pd W b i S S

u alone in exactly k steps are strongly controllable in

4 exactly k steps, or none is. In the latter case, however,

; some states may still be strongly controllable in less than Kk
é steps. But the pursuer will not, then, be able to keep the

3

state in M until time k , or to have it reach M at time k

only.

8) Capturability. The value of v at the present step is known.

If a state can be brought into M with that information, we

shall say that it is capturable modulo M .,

We have
W =(( ...(((po * Qo) + pl) * Q1)+ P, ) + Pk_l) tq_, -

Therefore one of the two following possibilities must arise:

e All geometric differences non-empty Wk = ng Pi
® Otherwise Wk =g .

The condition for Wk to be non-empty is

2 2
P, 2Q (P +P)) 2@ ... Z:‘ P, 2Q

which can be transcribed in terms of the matrices, considering

é X as the matrix corresponding to the projection operation
rank [7GinJ] = rank [nG] rank [G!XFG;nFJ]
= rank [#G{7FG , etc.

It sulfices that P, QQq or rank [7FoGinFY) = rank [F%G) Vq ;
it suffices also that P 2Q or rank [GiJ] = rank [G] .

AT
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These three conditions are increasingly restrictive; the first
one only is necessary. Because ® and F generally do not
commute, P_ ZZQO does not imply the second condition. Notice
that the existence of W implies, as it should, the existence

k
of WéQQ . The interesting fact is that they are equal,

The conclusion about the capturability modulo % in exactly k
steps is the same as in the case of the strong controllability.
Only the conditions under which the controllable states are

capturable are more stringent,

Ideal Capturability. No information is available on v . By

analogy with the concept of ideal observability, we shall say of
a state that can be brought into M in that case that it is
ideally capturable modulo M . We have

o = ((‘“((Po . Ql) * Pl) * Q ) * Qk-l)+ Pg-1 -

Therefore, two possibilities again arise:

® All geometric differences are non-empty f = ng Pi

® Otherwise f =0.

The condition for Wk to exist is

= 2 LN 2
Q, = (0} P 2Q P +P 2Q, P, =2Q
and this condition can be written in terms of the matrices:
nJ =0 rank [#GinFJ] = rank [7G] rank [#GinFGinFls]
= rank [7Gi7FG] ,
etc.
D Sl P A
Again, it suffices that pq_l _.Qq , rank [7F" "GinFJ) =

rank [ﬂFq—IG] Y q but the first condition only is necessary.

The situation is similar to what it was in the two previous cases,

with even more restrictive conditions that clearly imply the existence of

the two other sets, and then they all are equal.
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3.6 Discussion, Optimality

We find that in the case of unbounded controls, unlike in the other
case, a change in the information structure does not change the nature of
the sets of controllable states., It only changes the condition under

which these sets have the desired property.

In other words, if some states are, say, ideally -capturable in k
steps, then all states controllable in k steps are strongly controllable,
capturable and ideally capturable. What can be changed by the information
structure is the subspace M , modulo which the system has the discussed
properties. In particular, changing the information may allow us to
bring more coordinates of the state to zero., This is not in contradiction

with our previous statement which holds for a fixed subspace M.

As far as the optimality of the capture time is concerned, we have,
of course, the same "step by step" optimality as in Section 3.3, But the

"global" problem is now much simpler.
We consider the relation

x(1) =F x(0) - Gu(@) + J v(0) € Vk ,

and we know that the pursuer can achieve this if, letting P = range G ,

F x(0) + J v(0) € Vk + P . (3.6)

As Vk+P is a vector space, (3.6) is equivalent to a set of linear equa-
tions on v . If x(0) does not belong to Vk+l , then, by definition,
it is not verified identically. Then, the set of all v's that verify
it is an affine set in V , possibly empty. The union of a finite number

of such sets cannot be the whole space V .

Thus, if T(x) =p : x € Vp and x € Vk Y k < p , then there are
v's for which none of the relations (3.6), with every k smaller than

p , is verified.

This solves the problem by showing that p is indeed optimal.

58




L

TR

T

Caprark s

Begey o)

TR T

IR R

GL AT e i

Rt Xt i e

v s g -

PR

3.7 Invariant Capture Space

We are golng to investigate the case where the subspace M is in-
variant under F . A reason for doing so is that it corresponds to a
ratural problem in the frame of modern algebraic system theory. M is
then a submodule of the module structure induced on X by polynomials

in F .

The results take a simple form, and we are able to generalize to the
multiple input case a result proved by Kalman [19] in the single input

case,

1) The Strong Controllability Theorem. We first prove two simple

lemmas.

Lemma 1: If a state is controllable modulo M in p steps, it is also
controllable in p+q steps, q > 0 . This is an immediate conse-~
quence of the invariance of M . Translated in our notations,

this implies:

~1 + ptg-1
m«*pxe:pi:nppqxeipi Va>o0.

(9 (

Lemma 2: If Wp is non-empty, then Wp is not empty either, for

)
+q
every q >0 .

Proof: Assume

-1 5 -

This means that for every sequence vo'vl"'vp-l ., there exists a

corresponding sequence uo,u ,...up such that

1 -1

-1 -1
3%: k ig: k
F Guk = nF Jvk ’

oxr equivalently

=1 k =l k
z:Fcuk-s;FJvkem.

59




Using the invariance of M under F , we multiply by Fq

= k+q - Jk+q
EF Guk 21* JvkeM,

and as this is possible for every sequence vk , 1t is equivalent

to
p+y-1 2p+--l

which together with the relation we started from gives

p+gq~-1 p+g-1 p+gq=-1
) (9 _
z: P, =2 i Q or Wp+q = i P "

We can now prove the following theorem:
Theorem: When M is invariant under F , then

® Either all the states controllable with v alone (modulo M ),
are controllable with u , and then all the states controllable

with u are strongly controllable;
® Or no state is strongly controllable.

Proof: Assume that some states are strongly controllable. Then there

éqﬂ , and thus, by Lemma 2, W§°Q

- S -
Zj pi _Zf Qi . (3.7)

By Lemma 1, all states controllable with u are given by

1Fx € Zj P
1

and all states controllable by v similarly with the Qi's . Thus, if

(3.7) is verified, all states controllable with v ar= controllable

exists a non-empty W is non~empty.

with u , and all states controllable with u verify

(e

n

ﬂan EW
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and thus are strongly controllable.

If (3.7) is not verified, no state is strongly controllable, since

it is verified as soon as some are. This ends the proof.

ii) Absolute Concepts. We want to investigate under what condition,

once the pursuer has brought the state in M , he will be able to hold it
in M ., When he is able to do so, we shall say that the system is abso-
lutely strongly controllable, capturable or ideally capturable., Condi-
tions for this to happen in the case where M 41is not invariant can be
given, but they are not very interesting. Here, with M dinvariant, the

situation is very simple.

Let us first make a few remarks about this question in the case of

the strong controllability, Let £ be the smallest integer for which

wé”) is not empty. Then Wém) contains the origin. Thus, with the in-
variance of M , if the state has been captured at time p , we have
x() €M Fxm enm  wlxp) =o0¢ wﬁ”)

and the pursuer is able to have the state return to M every £ instants
of time. However, if he wants the state to belong to M at a given in-

stant m larger than p+f , m = p+q , he can always achieve this since
Flx(p) € M Fix(p) = 0 € wf”)

and we know that Wéw)

If we want the system to be absolutely strongly controllable, then

does exist.

()

i
1

must exist:
2Q .
Po Qo
This insures Pk ;le due to the invariance of M , as is easily checked:
if for every v there is a u such that
Gu = Jv Gu - Jv € M,

k .
we can multiply both sides of the second inclusion by F , which gives
the result, But chis implies capturability. We therefore have the {ol-

lowing result:
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Theorem: When M 1is invariant under F , the concepts of absolute strong

controllability, capturability and absolute capturability are equivalent,

The problem of ideal capturability is of no interest when M 1is invariant,
since ideal capturability requires that the range of J be in M, and

then the evader would have no control on Tx .

This finishes our discussion of the discrete problem.
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4, THE ISOTROPIC ROCKET GAME AS AN EXAMPLE

In this short chapter, we present a special pursuit-evasion game:
the Isotropic Rocket Game (I.R.G.). Our aim is to discuss its formula-

tion and to apply to it the results of the previous theory.

4,1 Description of the I.R.G.

The Isotropic Rocket Game was proposed by Rufus Isaacs in [17] and
[18]. In these references, Isaacs gave an analysis which, although
farther than ours from being complete, brought out several new and inter-
esting features. This analysis covers most of what we present in Sec-
tions 5.2, 5.3 and 6.2, We shall often refer to this work, We have
tried to stay as close as possible to the notations of [18]. However, it
was not always possible to keep exactly the same notation, partly because
this game appears at two different places in the book, with different
notations. A correspondence between ours and those of these two discus-

sions is given in Appendix C.

In this game, the dynamical possibilities of the two players are

as follows:

P. The pursuing object is to be thought of as a rocket able to
direct its thrust in any direction, whence the name of the game.
It has a bounded thrust-to-mass ratio, that is, an acceleration
the magnitude of which cannot exceed a fixed value F . Within
this restriction, this acceleration can be changed instantly

and is the pursuer's control.

E. The pursued object is a maneuverable target, with bounded
velocity. The maximum possible magnitude of this velocity is
w . Within this restriction, it can be changed instantly and is

the evader's control.

Notice that neither of these two descriptions is very realistic. A
rocket is not steered by instantly changing the direction of its thrust,
and we allow the target, an aircraft or an incoming missile, for instance,
infinite accelerations. However, simplified as it is, this model will

still give meaningful non-trivial results about the chase. In addition,
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it will yield new cconcepts for a general theory of differential games.

Capture is obtained when the relative distance of the two players
falls below a fixed radius of capture £ . This can represent two players
of finite radii Zl and zz with £1+£2 = £ , or a pursuer with lethal
radius £ pursuing a point-like target. We shall think of it in this
second and more realistic way, knowing that the analysis is equally valid
for the other case. Whether the capture set C must be regarded as an
open or a closed sphere is not important at the modelling stage. Depend-
ing on the techniques used, the question will be answered in the way that

best fits the mathematical formulation.

4.2 Dimension of the Geometrical Space

The chase occurs in the three-dimensional physical space, but we
neglect gravity. To recover Isaacs' two-dimensional formulation, we im-

mediately state the following fact:
Proposition: An optimal chase occurs in a fixed plane.

Froof: Let ;? be the vector from P (center of the capture sphere) to
E , and ;? be P's velocity. Consider the plane II defined at each
instant by P , ;’ and ;’, which thus contains E . Take a moving
rectangular coordinate system (x,y,z) with its origin at the point P ,
and such that the %~ and ‘y-axes are in Il : for instance, the y-axis
aligned with ;9. In these axes, the relative coordinates of E are
X
=y
o

and P's velocity is

0
)
v=\|v] .

0,

-—)
This coordinate system has an angular velocity  with respect to the

inertial space:
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Consider a new coordinate system (X,Y,z) » Still rectangular, with the
same origin and the same z-axis, but having, with respect to the previous
one, an angular velocity -wi » This new system has, with respect to the

—
inertial space, an angular velocity 9 :

Oy

_’
0 = a)Y

0

— -
and r and v have for components

Let 5% denote the time derivative with respect to the axes (X,Y,z) and

% the time derivative with respect to the inertial space, We decompose
—)

every vector on the (X,Y,z) axes. For any vector a(t) ; We have by

definition

a(t) - &(t)
a(t) = | B(t) g% = | B(t)
T (t) \T(t)

and, by the classical laws of kinematics,

TR
t = dt *

—-)
—)

Applying this to ;’ and noticing that %% = W)- v , we find

X = wx - U

Vv = -V

Y= wY V

0= LA th - wa

av _ =

and similarly with 5% = F , which gives
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U=F.\'

V:I*Y

FZ+U1)Y-V(DX.

0

2
If we notice that capture is defined by .\'"+Y2

2
< £ , we see that all the
information is contained in the four-dimensional game in X,Y,U,V . For

this game, the controls are the projections (w‘,wy) and (FK’FY) of

- -
w and F on Il .

Moreover, the dynamical equations of that game are linear, of type
(1.1). VWe can apply the optimality principle, derived in Chapter Two,

and we find that the optimal strategies must verify

2 2 2 2 2 2
“X+“Y—“ I'X+I'Y-F
and therefore
w =0 F =0.
% Z

Placing this in the =z equations of our two differential systems yields:

0 .

g =Y
-3
(¥hen ;’ and v are aligned, we can choose this solution.)

Therefore, the coordinate system (X,Y,z) has a fixed direction in
inertial space. As a consequenhce, the plane II , in which the chase

occurs, can be considered as fixed in space.

This proves the proposition.

4.3 Representations

Two main ropresentations of our dynamics will be used.

i) 4-DRepresentations, The first one is four-dimensionmnl. The

origin of the coordinnte system is at the center of the pursuer's circle
of capture. The orientution of the axes is fixed in inertial space. The
state variables are the relative coordinutes X,Y of the evader, and the

components U,V of the pursuer's velocity.
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The equations of motion are

X=-U+ wx
Y ==V + WY
. (4.1)
U= Fx
V=
FY
with
2 2 < 2 2 2 2
“X + “Y <w FX + FY <F .

This form is linear, and the previous theory will apply to it directly.

Notice a vectorial formulation of it, with vectors of the geometrical

space:

- (3 e (1)

e -
r = ~v + w&

. (1.2
—,

v o= F8

where & and 3 are unit vectors, the direction of which are the con-
trols. Here it has already been assumed that the players choose their

controls on the boundary of the control sets.

ii) 3=D Representations. 1t is possible to find a three-dimen-

sional representation: its equations are much more complicated than (1.1),
and non-linear, but it will be desirable in the subsequent theory to use

the lowest dimensional representation.

The game is obviously insensitive to absolute orientation in the
plane. We can take advantage of this by choosing the y-axis, for instance,
parallel to the pursuer's velocity. Then this velocity is represented by

a single variable, its magnitude.

Again, we assume that both players choose controls of maximum mag-
nitude, so that we can represent their controls by a single parameter {or
ench. Following Isaacs, we choose to give the directions of these con-

trols by their angle, measured clockwise from the y-axis: ¢ for the
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pursuer and V¥ for the evader.

The equations of motion are easy to derive.
dix A):

They are (see Appen-

. ¥
X == :% sin @ + w sin V¥

Fx
< §in @ + w cos V- (4.3)

e
]

v

F cos ¢ .

These coordinates are related to the previous ones through the formulas

v =/ U4tV
1

X = ; (-UY + VX) (4.4)
1 ,

y=3 (Ux + Vvy) .

In this system, the capture set is a cylinder of revolution around the

v-axis. As a consequence, we shall also use the cylindrical form of the
same coordinates:

X

r sin @

y r cos @

and the equations of motion now are

r =wcos (y-8) - v cos 8

. F w v

§ =-7sin @+ - sin (¥-6) + — sin @ (4.5)
v =Fcos ¢.

The various coordinate systems are depicted in Fig. 2.

iii) Parameter. The unit of length can be chosen arbitrarily, so
as to assign any desired numerical value to £ . This being done, the
unit of time can stil) be chosen so as to assign any desired valve to w .

Then the game is completely defined by a single numerical value for F .

G8




The Coordinate Systems

FIGURE 2.

69

[ BT, e APEs




In our analysis, we have chosen not to nondimensionalize, in order to
let the nature and meaning of intermediary quantities and relations be
more apparent. But the previous remark shows that a single non-dimen-

sional parameter is needed to characterize the game. We shall use

P =%Fs °

The factor two in the denominator has been put there for reasons of con-

venience that will appear later.

4.4 Results From the Previous Theory

1) Formulation. We use the linear representation, and we define:

; o o
W
Zz = = = Y
z -U u Fy M 0
-~V FY 0
And the matrix C is then
0 0 1 O 1 0 v O
0O 0 0 1 1C 0 1 0 <«
C=1l0 00 0 =0 =14 0 1 o0
0O 0 0 O 0 0 0 1

P and Q are disks in their respective subspaces. The geometrical sub-
space 1s the subspace of the first two coordinates, in which capture is

defined by

2. y 2
C=[z|x?+f5_z}
where, to comply with the formulation of our theory, C has been chosen
as a closed set, ‘

The operator #®(t) is given by the matrix

1 0 ¢ 0)

(1) = (o 1 0 7

so that F"r and Q'r are circles centered at the origin and of respec-
tive radii «F and w . Notice that whatever the relative value of the

parameters, for small enough 1T , PT<: QT .
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It is shown in Pontryagin [24] that this implies that, if the evader
knows the present control of the pursuer, capture is impossible if it is
defined as point coincidence: £ =0 ., We shall reach this same conclu-
sion without the assumption that the pursuer's control is known by the
evader (see Chapter 5). In fact, we are in a case where the sets wT
are disks, and have a single normal at each point of their boundary.
Therefore, the concluding remark of Section 2.5 holds; (2.7) and (2.7a)
define unambiguously the controls u* and v* , independently of each

other.

ii) Estimating Function. The sets C, P'r and QT are all
disks. After Pontryagin, we notice that in this case the operations of
sum, geometric difference and integral of sets reduce to sum, difference

and integral of radii. The alternating integral
H %
W=S (P % Q Jdr
T ¢,0 r r
is the disk centered at the origin, and of radius Q(t) given by
T 12
Q) = £ + g (rF-w)dr = F -5 - WT £ . (4.6)
0
and W.ro exists as long as Q(t) is non-negative for every <t smaller

than Ty ¢ { 1is given by

(o) = 100z = (§ov)

so that T(z) = To is the smallest positive root of the equation:

2 2
x-10)2 &+ @¥-? = Q0? . 4.7
We can use the formulation (4.2) to express (4.7) in a different form
- -
r v

T=r-r1

so that (4.7) becomes
I¥ - <l = et . (4.72)
We notice that Q(t) is quadratic in 7 , when [|{(7)|| is linear. Thus
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equaticn (4.7a) always has a solution if ||¢(0)] > Q(0) , namely
”;“ > £ , which is always verified for the starting point.

This means that if Q(t) does not vanish, capture will always occur

in finite time. Q(t) never vanishes if its determinant is negative:

2
v -~ 2FL <0 equivalently p<1.
We therefore have the following important result:

Proposition: For p smaller than one, capture occurs from all initial

conditions.

iii) Barrier. We have a somewhat simpler way of using equation
(4.7a). 1Instead of translating r by -vr , we prefer to translate WT
by +vt and directly check whether the point considered belongs to this

capture set.

Drawing these sets for a given v , we obtain Fig. 3, which is- the

same as Fig, 5.5.4, p. 114, in (18], although obtained by completely dif-

ferent means.

The most prominent feature of this figure is the existence of an
envelope. It is a line of non-regular points of first kind, or barrier.
Its equation is easy to establish. We use the axes of the three-dimen-
sional representation. Then the circles verify the equation:

2
x2 + (y"v'r)2 = (% FT2 - WT + £)

and their envelope is given parametrically by

-F
y = VT = = Q(T)
Vv
(4.8)
J=F2x2 2 - w2
x =+ Fete 4 2w€7 + V w Q) .

The double sign in x accounts for the two symmetric parts of the en-
velope. Here, the parameter T is the estimated time to go just inside
of the discontinuity, and on the barrier itself, which verifies the con-

ditions of the last theorem of Section 2,11, (But the trajectories of
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the barrier do not have the shape of the envelope (4.8), since they have

a varying v .)

When p >1, Q(t) vanishes for some Ty this envelope defines a
curvilinear triangle of increasing size as v 1s increased. The locus

of its vertex on the y-axis is a straight line at:

x=0

y vT

.

1

We shall later refer to this line as the "crest." We are insured that,

inside this region, capture will always occur.

4,5 Conclusion

The technique developed in the first part has given us a positive
answer to the problem of completion: for p < 1 capture is always pos—-
sible. Moreover, if we can check that the trajectories do not cross ths
barrier or penetrate the capture circle, we have the optimal time of cap-
ture and the optimal strategies. This will be found to be the case for a

large region of the state space.

However, it will be seen that some of these trajectories would in
fact penetrate C . Consequently, we do not have the optimal strategies
for the region these trajectories come from. Neither can we assert

that for p > 1 evasion occurs from outside the region of finite T(z) .

This problem will be investigated in the next chapter by trying to
construct directly all the barriers. It will be seen that escape is

probably not possible unless p is larger than some p0 larger than one.
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5. THE GAME OF KIND

In this chapter, we generalize the concept of barrier and use it to

investigate the game of kind, the outcome of which is qualitative:

capture or escape.

5.1 Semi-Permeable Surfaces

i) Analytical Description. In [18], Isaacs introduces the concept
of semi-permeable surfaces. Let the dynamics of a game be (we use @

and ¥ for the controls):
z = £(z,9,¥) .
Let S be a surface and vy 1ts normal, Suppose it is such that

min max (v,£(z,0,¥)) =0 . (5.1)
® v

We shall always assume that f is "separated,” that is, of the form

£(z,9,¥) = h(z,¥) - g(z,9)

so that

min max (v,£(z,9,¥)) = max {v,h(z,¥)) - max (v,g(z,9)) .
¢ Vv v )

Equation (5.1) has an obvious geometrical meaning: it states that player
E cannot force the state to cross S in the direction of v , when
player P cannot force it to cross S in the other direction. Thus,

if they both try to do so, the ensuing motion will be in S . S is called
a semi-permeable surface. Its analogy with the barrier of Chapter Two

is obvious, particularly in view of the last theorem of that chapter.

In particular, if such a surface defines a closed region containing
the capture set, with v pointing outside, the evader can make sure he

will never penetrate this region if he starts from outside, and thus never

be captured.

Even if this region is open, such a surface can still represent a
discontinuity of the capture time if capture is only possible on one side
of it,
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The way to construct such surfaces is discussed in [18]; we shall -

indicate it only briefly.

Given a line of initial conditions, one first determines at each
point of it a vector v normal to this line and verifying (5.1). The
same relation also determines ¢ and V , uniquely if the "vectorgrams"

P and Q are strictly convex, and thus z .

The differential equations for the normal vy along a trajectory
are well known to be the adjoint equations. See, for instance, [3]. &z

being a vector tangent to the surface, it verifies

82 = (%i-) 5z
and taking
*
v=-(&)v

where the star denotes the adjoint operator, we have, defining q as

q = (V,ﬁZ) -
*

=t G om) ¢ () o) <0

so that if q is zero at some time, it is at every time, and we check

that ¢ stays'normal to the surface.

ii) Geometrical Description. Notice that (5.1) provides one rela-

tion only between z and v , so that at each point of the state space,

" and

there usually exists a cone (hypercone) of "semi-permeable v's ,
a corresponding cone of ‘semi-permeable directions" £ . We propose a

simple gecmetric construction of these two cones.

For a given point z , let P = g(z,9) , @ € ¢ the set of allow-
able @'s , and let Q = h(z,¥) , V€ ¥ the set of allowable V's .
Notice that as compared to our earlier definitions, the terms independent
of the controls in f , Cz , for instance, have been arbitrarily cast
into one of the functions h or g , thus translating P or Q by the

same amount.
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Let a bitangent plane be a plane (hyperplane) II such that

1) I contains one point at least of each of the sets P and (A

2) P and Q are both entirely contained in the same half space

defined by 1 .

Let v be normal to Il , opposite to the half space containing P
and Q .

Proposition: v 1s a semi~permeable normal. The corresponding semi-per-

meable directions are the vectors joining any point of IMP to any point of IIfN\Q.

Proof: Let

g(z,0™) enMp hiz,¥*) enfMaq .

Because of property two

(v,e(z,9)) < (v,g(z,0) Voeo

(v,h(z,1)) < {v,h(z,¥™) YyEY.

Thus

(v,£(z,¢*,¥")) = m(ibn max (v,£(@z,0,1)) .

Since g(z,Q*) and h(z,V*) both belong to Il , their difference is
parallel to Il , hence normal to v . Therefore, relation (5.1) is veri-

fied and the proposition proved (see Fig. 3).

iii) The I.R.G. In our case, with f given by (4.3), we can

represent the vectorgram as follows (see Fig. 4).

In an (x,y,v) space, visualized with its axes parallel to the
(x,y,v) axes, Q is a circle of radius w centered at the origin and
lying in the X%y plane; P is an ellipse centered at a point (0,v,0)
with one principal semi-axis of length F parallel to the Vv axis, and

. g
the other one, of length %; in t::e Xy plane normal to r .,

In the case drawn in Fig. 4, there are two separate cones of y's
glven by our construction, one "above" the plane of P and one "under."

Correspondingly, there are two cones of semi-permeable directions.

77




i o L K s

<

BT
|

4n e ®

%
-FIGURE 4. The Cone of Semipermeable Directions
yA 9“
F |
. /\ £L '
/ \V\/
! 1
/ 7 ; =
] ! F i
! I’ \
!
/
!
i ! \ __/
3 '
X v
w
e J
FIGURE 4a. The IRG Vectogram

78




w3 TV ey

T

(b e T i Sk

i e tiac et i

T e e ML e

If one extremity of the axis of P 1lying in the Xy plane is in~
side Q , then there is a single continuous family of v's , and of semi=-
permeable directions. By elementary geometry, it is easy to see that we

are in the first case for
Q =——,,—'+V2—2F.\’—W2>0.

If Ql < 0, the two cones merge together to yield the second case. This
family splits again into two separate cones, on each side of the Xy

plane, when

F2 2

2
A Y

+ v2 + 2Fx - w2 <0 .

[

Notice that for positive x (the game being symmetric with respect to
the yv plane; we shall always consider this half space), Qo has a

2
minimum for v =Fr , x=0, y=£, Q, = 2F£—w2 , SO that it can

be negative only when p > 1 .

Notice that for Q1 or Qo equal to zero, a particular semi-per—~
meable direction is £ = 0 , meaning that relative rest satisfies (5.1).

The sign of Ql will turn out to be important in part of the analysis.

5.2 The Natural Barrier

i) The B.U.P. It is pointed out in [18] that the game can terminate
only in the "usable part" of the capture set, such that, v Dbeing the

outward normal,

min max {v,£(z,@,¥)) <0 .
® ¥

For convenience, the capture set will now be considered as open, so that
trajectories arriving tangentially to it still provide escape. Hence

the strict inequality,
This usable part has a boundary given by

mén mgx (v, £(z,9,¥)) =0 .
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Comparing this with equation (5.1), it is clear that we can attach to this
line a semi-permeable surface having the same normal v , and thus tan-
gent to C . Trajectories of this surface do not provide capture along

the B.U.P.

This surface locally separates the state space into two regions.
The first one contains the usable part of C , and a game starting from a
point of this region can be completed in a simple way. But from a point
in the other region, if capture is possible the trajectory must in some
sense go around the surface. Therefore, this surface is a barrier; it
represents a discontinuity in the time of capture. This barrier emanating

from the B.U,P. is called the natural barrier.

In our case, the boundary of the usable part is the curve B defined
by

min max [w(x sin @ + y cos @) - vy] =wf - vy =0

9
or
w-vcosd=0.

It exists only for v > w. Projected on the yv plane, it appears as
a hyperbola, extending from v =w , y = £ to infinity asymptotic to

the v-axis.

ii) Equations of the Natur»l Sai=‘ev. At this point, we need to

establish the differential equations resulting from (4.3) together with

(5.1).

(5.1) gives, with the components of v being Vy Vy and vy

XV_=yV :
min max | F % gin ¢ + v, cos ¢) + w(y_ sin ¥ + y_ cos WiJ
® Vv v v X y

y

Introduce the foliowing notations:

o 0
p= Vi + V2
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The strategies satisfying the minimax condition are given by (5.3), which
shows that the evader points his velocity parallel to, and in the same

direction as, (vx,vy)

e S e ahd

v v
: ¥ _ 8 oo X
sin ¢° = = sin ¢y = 5
3 (5.3)
v v
x _ Vv *x _ Y
g cos ¢ = = cos ¥ = ?;
b
i and (5.2) becomes
i
= =}Q - -
§ H1 Fo + pw vyv 0. (5.2a)
: The dynamical equations and the adjoint equations are then
ro.
j yv Vv \ARY
: %= -F =2 44X v =-p L8
s 2 X 2
v a vao
Xy v A\ RY
y=F—=24+w-L-v {4 =F "2 (5.4)
veo e y veo
A% v
‘°’="F—GX \'lv=-F—3e+v.
v g y

These equations will appear again; they actually are the Euler-Lagrange

e
e e Aol

equations of the optimization problem. They are discussed in Appendix A.
It is shown, in particular, that in the other coordinate system, their
closed form integration, with any initial conditions, presents only ele-

mentary difficulties.

According to (5.2a), Hl must be a first integral of (5.4); this

can be checked directly from the equations. Hl actually is the Hamil-

tonian of the "abnormal" optimization problem in the game of degree, as

we shall see later.
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We know the vector v at the terminal point of the corresponding
trajectories., Consequently, following the usual practice of dynamic
programming, we integrate (5.4) backwards from the curve 3 , calling =
the time to go. We choose the velocity as the parameter of B , and to
distinguish it from the running variable, call it s ., Similarly, when

needed, the corresponding angle & will be labelled B . On B we have

£ /1= (w/s)? v = p/1-(w/s)2

"
1}

X
y = L(w/s) vy = p(w/s)
V=S8 vv =0

where p 1s an arbitrary parameter, since the length of the vector v
is of no importance. Notice that an immediate consequence of equations

(5.4) is the first integral
p = constant,

The solution is, for the half space x>0 ,

[s2—w2
VSTW QD)

X

/52_-752"(
v

% F12-w1+£) =

v
y = 1id F213 -3 Fw'r2 + (52-w2~F£)T + wh
vi|2 2
(5.5)
=TT o) + ve
v = J/F272-2wFr+s2 = / (w-F1)24s2-w2
and for the adjoints
_ Js22
Vx TP TS
= p ¥-F1 (5.6)
vy =P
_ w-F1
VV = =-pT v

The integrand in v has a minimum for T = w/F , and for this value our
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formula gives

0

<
n
"
I
£
v

so that v is well-defined, as well as x and vy .

Notice that x has the sign of Q(t1) . As in the previous theory,
the barrier closes in the (y,v) plane if and only if Q vanishes. And
if Q(Tl) = 0 , then our surface intersects the (y,v) plane along the

straight line (0 : y = vt For p =1, the surface is just tangent to

1 .
the symmetry plane, and thus to the symmetric part, along that line, with

=WFo
o /

It is interesting to compute the equations of a cross-section of
this surface by a plane v = constant. We eliminate s between v and

X , and obtain:

~F2 w2
x = w/ F TZ:ZWFT W Q1)
y = 2ET 0+ vr .

\4

We recognize equations (4.8), thus completely identifying this surface

with the barrier already mentioned.

iii) Termination. However, although the trajectories (5.5) are

smooth, sections at constant v of the surface (4.8) have a cusp for

1 1 2
Te = F [w +J—§ (w -2F£+2v)]

value which is always larger than w/F , and thus than the lower root of

Q(t) 1if there is one, so that this cusp does not appear when the barrier

closes.

The explanation of this cusp when the trajectories show no such
anomaly is that the surface actually has a cusp, but the constituting
trajectories are tangent to it, so that they are smooth across it, Ve
have a verification of this fact by calculating the envelopes of the
projections of the trajectories on two different planes, and checking

that contact with the envelope is obtained for the same T in the two

83




g

projections, so that the two envelopes are the projections of the same

t

curve in the three-dimensional space.

It is lengthy but straightforward to see that formulas (5.5) give

Ox Ov _ Ov Ox _ F1-w 2 2 2 2
3;— d-—-'—r- SE 8:; = S 2V2 sz-wz F T - 2FWT - 2(5 -W "F)e)

%Ea 5}15.___[1321 - 2Fwr - 2 (52w -Fﬁﬂ

which agrees with what we have just said.

This phenomenon is interesting in several respects. First, it shows
that the barrier comes to.an end. In fact, after the cusp, the surface
is still semi~permeable, but with the vector v pointing inside the
capture region, so that it would correspond to a situation where the
evader would be trying to force capture, against the will of the pursuer.

This part must thus be discarded.

But also, it will appear that this is not an isolated case, but hap-
pens on most of our barriers, This case is the only one for which we
have simple analytical formulas allowing a detailed analysis of the situ-
ation. A full understanding of the geometry of this case will'help in

other instances,

5.3 The Envelope Barrier

i) The Envelope Barrier. Another problem was pointed out by Isaacs.

On B we have
2
by =8 - w2 - F,
so that for s < +wZ2+Ff the trajectories (5.4) actually arrive at 3
from inside the capture circle, which they have thus penetrated at an
earlier time. This is a typical occurrence of the problem pointed out

in Chapter Two. As a consequence, these trajectories cannot be retained

as escape trajectories.

We shall therefore consider B as interrupted at the point B :
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v=s= \/w2+Fz cos § = cos B = —:Qé:: r=4
VWeAFf

and the crest at a point A' :

WZ“F,@ .

[}

=0 =
x y =1V v

The barrier presents a "hole" at its lower v end, and what happens in

that region is unanswered by the previous theory.

The way out of this difficulty was found by Isaacs: from B , one
constructs a semi~permeable line of the lower dimensional game in which
the state is constrained to remain on the capture circle., It is shown in

[18] that this line has the following properties. Let 9 be this line.
It is tangent to B at B ;

It is such that a barrier can be constructed from it, made of tra-

jectories that reuch C tangentially to 9 ;

This barrier, the "envelope barrier" & , provides a smooth exten-

sion to the natural barrier.

These facts can be understcod in the following way. We know that at
each point of the state space, there is a cone of possible semi-permeable
directions, Taking a point on the non~usable part of the capture cylinder,
we can find in this cone a direction (actually two) which is tangent to
the cylinder., This defines a field of directions on the surface of the
cylinder, equivalent to a differential equation. The curve 9 is the

integral of this equation through B ,

Clearly, v 1is normal to 9 at each of its points. Therefore, the
trajectories constructed with this vy form a barrier. By construction,
they are tangent to 9 , and this is the only way in which a barrier can

reach the non-usable part of C without penetrating it.

It is clear that once 9D 1is reached, playing the strategies of the
semi-permeable surface will cause the state to follow D since they
define a direction always tangent to it., Moreover, if we look a priori

for trajectories straying on the surface of C, D appears as a semi-
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permeable line, since & itself is semi~permeable,

Notice that D 1is for the envelope barrier a cusp of the type dis-
cussed in the previous section, and the prolongation of the trajectories

was, of course, discarded.

ii) The I.R.G. With our equations (4.5), the condition that a

trajectory lie on C is

r=wcos (Y=8) - vcos 9 =0

"

cos (Y~-8) % cos 8

1
p Vv wz—ycosze ’

sin (¥-9)

the sign of sin (y~8) being chosen in such a way that the evader runs

away from the center line, toward the non-usable part.
The dynamics become:

g = - % sin @ + % (v sin 8 + vw2-v2cos2g)

(5.7)

VvV =F cos ¢ .

Referring to our vectorgram (Fig. 4), the requirement r = 0 obliges the
evader to choose his control at the point of Q which lies in the plane
of P . Then, considering the restricted vectorgram in this plane, our
geometrical theory shows that the pursuer must choose his control at the
point of contact of one of the two possible tangent vectors. We choose
the one that gives an increasing v +to be in agreement with the natural
barrier at B . It is found by maximizing the ratio v/6 . Notice that
it is clear from the geometry of the vectorgram {(Fig. 4) that such tan-

gents exist only if Ql <0,

We introduce, following Isaacs,

a = % c = % (v sin 6 + vVw2-v2coslg) .

The semi-permeable direction is obtained for

sin @ = % cos ¢ =1 % c2-a2
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and the corresponding equations of motion are

e
i}
e

.

We can eliminate the time, avoiding a technical difficulty where 6 =v
=0 : 2 2 2
(v sin @ +«/w2-v2c0829) B4
N ) 2
96 _ et v (5.8)
dv ~ F - FJ ‘ ’
This equation does not seem to be integrable in closed form. Since in

[18] only analytical solutions are sought, deliberately excluding numeri-
cal integrations, the problem is left at this point with the conjecture
that D might reach the (y,v) plane, whenever p > 1 at least, and
the envelope barrier together with the natural barrier seal off a capture

region. Escape would occur for any starting point outside this region.

It turns out that some more analytical results can be obtained.
Then, the use of high-speed computers allows us to check them, and to

proceed further with the investigation of the problem through numerical

integration of the equations.

5.4 Termination of the Envelope Barrier

1) Termination of 9 . The curve 9 is obtained by integration of

(5.8) from B toward lower v's . This integration can be carried out,

at least in principle, as long as 02 - a2 > 0 . The question is whether

2 2
it reaches the symmetry plane before reaching the surface ¢ =a , It

cannot reach the plane v =0 where ¢ is finite and a infinite,

In the region of interest, both ¢ and a are positive., Thus, we

want
c>a or v sin 6 + \/wz-vzcosze > %% .
. Fp . . v
In the vicinity of 8 =0 , < - v sin @ is positive. We isolate the

square root and square both sides., This gives
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~2Ff sing -w <0,

which is consistent with our remark of the previous section, based upon

the geometry of the vector

Let @ be the curve

v = JFE

From this, we immediately

gram,
Ql=o, r=.gt

2
. w
sing =1 - 5FZ = l-p.

conclude that

It has a minimum in x for

1) For p<1, the curve D never meets the symmetry plane @ = C ;

2) For p=1, if 9 reaches

Thus, let us see in more detail what happens at that point.

Equation (5.8} shows
to the v-axis.

curvature greater than tha

Using its equation Q

that upon reaching Q ,

t of 9P at the same point.

) = 0 , we find for Q ,

(gﬁe_) __si
N
At A, sing =0 ,

(9.’”.@.) _4
dv2 a F

Differentidting (5.8) with

after some rearrangements,

2
n 6 (v _ Fz,e?‘) . 1
c0539 v3 FZ cos @

v = /F4 , we obtain

respect to @ , using c¢ =

that

dv2 D F
-2

When

L v, R
6

~v“cos

c2 sin Q{] )

Vc2-a?
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sing +

g =0, it is at the point A :

P has to be parallel

Thus, an integral can pass through A only if it has a

can check,

cl

—_— 2 2
v goes to /FL , and 6 to zero simultaneously with ¢ -a ,
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this quantity satisfies, since sin g is positive,

(d29> < v cos @ _ 1
dv2 D - F2 \/wz-vzcosze Fe

Therefore, no curve satisfying (5.8) can exist at A , and we have the

following result:

Proposition: For p =1, the curve D does not reach the symmetry

plane.

It has been found by numerical integration that it terminates at a

point D , which is an equilibrium point of the relative motion, given by
v =0,6002 X w @ =0,0543 1rd .

Consequently, the envelope barrier does not seal the "hole" left by the

natural barrier.

For values of p sufficiently larger, 9D does close. The limiting

value po has been numerically found to be

p, = 1.062 .

ii) The Envelope Barrier. To compute an incoming trajectory, we

need the adjoint vector vy at each point of 9 . v, and ve can be
obtained from the fact that vy is normal to 9D . Then, the third com-

ponent V. can be obtained from H, = 0 for the three-dimensional game.

1

In the cylindrical system of coordinates, we have

2 Ve
+ v 4+vi—sing~-v cosg] =0.
r r r

The first of the following two relations comes from the fact that v is

normal to D . Placing it in the above equation and rearranging, H

1
becomes & perfect square and yields the second relation:
_ _YePma?
Yy T F ]
(5.9)

v = 1l __vcosg v
r »3\/“3_‘,2005'26 &
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It is convenient to introduce the parameter p

and the angle Y :

p cos (Y-9)

. p siny V.

v

v pcos Y Vv rp sin (y-g)

y 6

and relation (5.9) yields Y , and consequently all three adjoints,
through

w cos (B-Y) = v cos 6 . (5.9a)

Notice that a consequence of this last relation is that at B , where

vecos 8 =w, 6 =7 . Thereiore, ve

a verification of the fact that v is the same for both barriers at

= vv =0 and vr =p ., We have

this point.

It has been found that the envelope barrier is terminated by a cusp

of the type already described, that reaches the capture circle at D .

It is an interesting problem to find a way to characterize such a
cusp with absolute certitude when the available data is numerical, and
therefore approximate. In particular, it seems difficult to distinguish

a cusp from a "fold" with very small radius of curvature.

The solution lies in the fact that together with the trajectories
defining our surface, we compute, with a separate set of equations, the
normal vector v . This allows us to follow continuously a given side of
the surface, and consequently éo distinguish between a cusp and a finite

radius of curvature, no matter how small (see Fig. 5).

A numerical localization of the cusp is possible with good accuracy

by computing a curve on the surface, other than a trajectory.
The situation is now the following:
For p< 1l : We have a smooth open barrier terminated by a cusp.

Capture will occur from any initial condition, in agreement with

90




(4

St LR M e N

o e s it

FIGURE 5. Characterization of a Cusp

the results of Chapter Four, The precise shape of tha optimal

capture trajectories will be investigated in Chapter Six.

For p =1 ¢ The natural barrier closes forming a crest on the (y,v)
plane. But the trajectories of the envelope barrier never reach
that plane. Thus, the two symmetric parts of this barrier are

tangent at A' and separate toward lower v's .

For 1 <p<py,: The envelope barrier forms a crest on part or

all of its length. It is still open at the lower v end.

For p > po ¢ The two barriers form a continuous surface that seals
off a region of the state space. An evader coming from outside

this capture region can always escape.

Figure 8 schematically depicts the situation for p =1 , The en-
velope barrier has been arbitrarily interrupted at y = constant for

clarity.

5.5 The Envelope Junction

i) Motivation. The two barviers we know so far correspond o a
chase in which the evader side-steps in an attempt to outmaneuver the
pursuer, Curve 9 terminates for small v's because the pursuer is
then too maneuverable. We expect that the evader will take advantage of

his greater speed and essentially flee from the pursuer.
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Consider, in particular, a chase starting in the symmetry plane, at
low v . It is intuitively clear that both players will direct their
controls in the direction of the vector v . The ensuing motion, a
straight chase in the physical space, will appear in the state space as a
parabola in the (y,v) plane, the equations of which are given by

v _ . _ av _
at - VoV at - F

that integrates into

y -y, =% (v ) - w-n?] .

If p> 1, the barriers reach the (y,v) plane. One of these parabolas
Just reaches the crest and provides escape. It should be part of a bar-

rier, since a parabola immediately under it fails to reach the barrier.

For the worst case: p =1, yo = £/ still corresponds to a posi~

tive Vo e Precisely, it must go thrcugh A' , which gives

We notice that such an escape trajectory, if it is to be retained as
part of the barrier, presents a corner where the parabcla reaches the
crest., Hence the need for the equivalent of a corner condition for bar-

riers. This is provided by the following theory.

ii) A Corner Condition., Let s?  and Sb be two semi-permeable

surfaces intersecting at a non-zero angle. Each of them locally separates
the space into two regions: Ri and R; for §° , and similarly for Sb
the subscripts being determined by the direction of v (we purposely
avoid specifying whether v. points into region one or two). The com-
posite surface locally separates the space in two regions Rl and R2 .

Let us say that

R, = Ri ﬂnll’ (dihedron less than = )
R2 = R;‘~)R; (dihedron more than x ) .
93




The composite surface S is obtained by discarding the por-

2
player who tries to go into region 1, and @2 the other player's control.

. a b . .
tions of S and S lying in R, . Let @l be the control of the

We make the following assumption:

Assumption: On semi-~permeable trajectories arriving at J = Sa f\Sb ’

condition (5.1) uniquely defines @l .
Under this hypothesis we prove the following theorem:

Theorem: For S to be a barrier, it is necessary that the trajectories
incoming to the junction do not cross it. They must either be tangent to

it or present a corner.

Proof: Let us assume the contrary: some paths, say in s? , actually

cross J . Two situations can occur at J :

1) wi # @? « When the state reaches J , player 2 will keep his

strategy @2 . If player 1 keeps his strategy @i s, by the current hy-

pothesis he will let the state penetrate R;<: R2 .
other strategy, by our previous assumption he will let the state penetrate

If he plays any

R;<: Rz . In every case the state penetrates Rz , and S 1is not a

barrier.
a b . a
2) ml = @l . Then when reaching J on S , player 1 has a con-
trol that prevents crossing of Sb , and consequently of J . Therefore,

the trajectories of s? cannot cross J .
T.iis ends the proof.

Remark 1: @i = @? i- not necessary. A pair of strategies (¢;,¢Z)
can generate paths reaching Sb tangentially without being equal to
(¢§,¢;) at J . In that case, the theorem states that the trajectories
of S? will fall back into Rl . Player 2 is thus obliged to change his

strategy. He has the choice between two possibilities:

b
1) Either switch to ¢23 then player 1 will switch to P and the

game will follow a trajectory of Sb , which supposedly leaves J ;

H
2) Oxr vary ¢§ so as to be always in accordance with ¢2 on the
incoming trajectory at J . Player 1 must then choose the corresponding

control @i , and the state will traverse J .
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Remark 2: J is for S a cusp of the type discussed earlier, so that

s? actually comes to an end on J ., The same reasoning as in our proof
applies to the junction of a barrier with the non-usable part of C and
gives the envelope barrier. In that case, the surface we join on is not
semi~permeable, and the evader has an infinity of strategies that prevent
crossing it, But we needed to assume the unicity of @l on the incoming

trajectories only.

iii) The "Roof” for p=1. For p =1, the parabola we have

described above is tangent to the barrier at A' . It is thus natural to
construct an envelope junction from A' on the envelope barrier & . As
we do not have the analytical expression of the envelope barrier, finding
the junction, say ¢ , as a barrier of the game constrained to lie on

& 1is not feasible., We choose a different approach:
Let f(v,z) be the direction defined by the controls verifying
mén mix (v,£(z,9,1)) = (v,£(v,2)) .

Let vb be the vector v on § . The problem is to find whether the

equations
(v,£(v,2)) =0

(vb,f(v,z))

(56.10)

0

b .
have, for a given z , a soluticn va Z%v . The first equation says

that v belongs to the local cone of semi-permeable normals, and the
second one that the corresponding direction is tangent to & . We are
looking, in the cone of semi-permeable directions, for a direction tangent

to & , other than that of the trajectory of & .

If such a direction exists, for =z in some neighborhood of Al , we
can consider, on the surface & , the field of directions f(va,z) , and
integrate it as a differential equation. As we are looking for a curve
lying on the envelope barrier, which is known only numerically, carrying
out this program presents some technical difficulties. The ideas of the

numerical method used are outlined in Appendix B.

In our case, equations (5.10) can be made simple, introducing the




£
£
&

parameters p and Yy as in the previous sections, and @ = 9=y , the

angle between (vx,vy) and r . (Notice that V* =y .)

They become:

Hl = =Fg + p(w=v cos 1) = 0

2b 2 2
~F(v VoV, P T sin aPsin Q) + pvzc[w cos (r-rb) (5.11)

- Vv cos Tb] =0 .

To avoid difficulties in the case vs =0 , we solve the first equation
for Vv and put it in the second one. And we look for the roots in 7y

of the equation:

2
2 b v 2 2
F vvv Vlji (w-v cos 7)° - r sinza - szrzsin apsin Q
F

+ vzpz(w-v cos Y)[w cos (Y-Yb) - V cos Yb] =0 (5.11a)

where, we recall,

b -
a = @-r7 oP = g~7 (pb =p) .

It can be checked that H? = 0 implies that this equation admits the
root Yy = Yb , but we want a different one, At A' , Yy =0 is the
desired root, For other points, this equation was solved numerically by

Newton's technique,

We were able actually to compute a junction ¢ and the corresponding
semi-permeable surface R® . The main feature is that ¢ meets the cusp

terminating & , and not 9 , at a point J :

x = 0.772 1072 ¢ y = 1.37287 £ v = 0.6438 w .

Consequently, the "roof" R , while it does seal the hole between & and
the symmetry plane, still leaves a "hole" in the barrier between the end
of & and the trajectory of R arriving at J . This situation is de-
picted in Fig. 7.
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5,6 Singular S.P.S. .

P, % 1,092 , the envelope

barrier forms a crest on part of its length, but the end of this crest

i) Motivation. For 1< p < p2 , Where

has a smaller slope than the parabola at that point. Consequently, this
parabola cannot be part of a barrier, since after reaching & it falls
back in the escape region, violating our necessary condition., Also, and
this is closely related to the previous fact, a parabola immediately
"under" it still reaches the barrier and provides escape, showing that

the previous one was not a limiting escape trajectory.

loosely speaking, on that parabola the evader was too strong. The
limiting one, the one that verifies our theorem, is the parabola that
reaches the crest tangentially, and this determines the point where the

roof must attach. However, a new problem arises.

If from that point we apply the previous construction, we still find
a junction § and a corresponding roof R . But now, we start from a
point where & is not tangent to the symmetry plane. Consequently, the
trajectory of R reaching the crest does not lie in that plane, but
reaches it at a non-zero angle. Therefore, the envelope roof is now made
of two symmetric strips, leaving a hole between these two, in ;ddition to

the hole already described in the case p =1 .

In particular, we have not found what semi-permeable surface our
parabola is imbedded in. To solve this problem, we need a slightly new

concept.

ji) The Singular S.P.S, We have seen that, at each point of the

state space there is a cone of semi~permeable directions. We claim that
the family of trajectories generated by such a cone, by backward integra-
tion, is in fact a semi-permeable surface. We call such a surface a

singular S.P.S., referring to the point where all its trajectories meet

as its singular point.

That it is a semi-~permeable surface can be seen by the fact that

each vector v at the singular point is normal to a tangent plane of the

cone at this point. This is a consequence of our geometric construction .
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of this cone as the envelope of a family of planes I normal to the v's .

Then, the transformation

transforms such a plane into a tangent plane at an ordinary point of the
surface, and v being governed by the adjoint equation will still have a

constant, thus zero, dot product with &z .

This proof is based upon our geometrical theory of the semi-permeable
cone. But the same fact can be seen in Isaacs' analytical theory, con-
sidering his theorem on the construction of semi-permeable surfaces ([18],

theorem 8.3.1, p. 208). He parametrizes the initial curve with s and
proves that
oz .
R =Zv.§—1
k 3 J sk

is a constant., If it was zero at 1 =0 , it remains zero for every T .

This can happen in two different ways:

either v is normal to the line z(s) (ordinary semi-permeable
surface)

(singular semi-permeable

or 0z./0s =0 VY i
i
surface) .

We are going to employ this concept to complete the roof.

iii) Completion of the Roof. Observe that at the end of the crest,

incoming trajectories need not be tangent to & . As long as their pro-

longation falls back into the capture region, as is the case for the

parabola we retained, they do not violate our necessary condition.

From the point where we attached ¢ , we can construct a singular
surface, limiting it to those trajectories that are tangent to & , and
thus belong to R . All the trajectories of this family fall within the
conditions of our theorem. This surface provides a smooth extension to

the previously constructed roof, and completes it toward the symmetry

plane.
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Construction of the roof was carried out numerically for various
values of the parameter. The shape of the surface obtained depends on
this parameter. We found that two limiting values Py and p2 have to
be considered, Precise numerical determination of these values is dif-

ficult, due to low sensitivities. According to our calculations, they

are in the ranges

1.056 < Py < 1,087 < P % 1,062 <1,001 < P, < 1,092 .

For 1 <p< pl , we have the same qualitative situation as for
p =1 . The envelope junction reaches the cusp on & . The roof seals
the hole between the envelope barrier and the symmetry plane, but leaves

two symmetrical ones between its last trajectory and the cusp on & .

For pl <p< p2 , the envelope junction reaches the curve D . We
have a closed capture region delineated by the natural barrier, the en-
velope barrier and the composite roof. Notice that the smallest value of
the parameter for which the capture region is closed has been taken down
from po to pl , closure, between these two values, being provided by

the roof.

For P, < p , the crest has a slope larger than that of the para-
bolas on all of its length. No roof occurs. The natural barrier and the

envelope barrier together define a closed capture region,

5.7 The Main Singular Barrier

i) Junction of Three Surfaces., From the point J where the en-

velope junction 4 meets the cusp on & , we can generate another singu-~
lar surface, A& , that provides a smooth extension to the roof toward the
"side." The question of whether this semi-~permeable surface, together
with the rest of the barrier, still forms a barrier turns out to be dif-
ficult in two respects. The first problem has to do with what happens at
J . It will be discussed here. The second one has to do with the inter-
section of A& and & . It will be mentioned at the end of this sub-

section, discussed in Section 5.8, and again at the end of Chapter Six.

At J , the trajectories of 4 seem to violate the necessary condi-
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tion. Our theorem, however, was for the junction of two ordinary sur-

faces, and did not exclude the possibility of a third, singular one.

In this instance, it turns out that the direction fa of the roof

and the vector vs of 4 verify

v, >0 .

It means that for this pair of surfaces, it is the pursuer who has

the advantage of the larger region (region 2 of the theorem).

Then, upon arrival at J on a trajectory of 4, the sequence of

decisions is as follows:

1) Since the trajectory extends into the escape region, the pursuer

switches to the roof strategy.

2) If the evader does not switch, he will let the state drift below
the roof. If he switches to the roof strategy, he places the
state on a trajectory that goes back into the capture region,

Thus he must choose the envelope barrier or the envelope junction

strategy.
3) Thus the pursuer is obliged to switch again to counter the evader,

If the pursuer had switched to the envelope barrier strategy to start
with, without the evader switching first, he would have let the state go
above the roof in the escape region. On the other hard, the evader could
not directly switch to the envelope barrier strategy, because then the
pursuer would not have switched and the state would have gone under the

singular barrier in the capture region.

The effect of the various choices can be shown in a diagram. We
have plotted hcrizontally the three choices of the pursuer, by the name
of the surface he plays according to, and vertically the choices of the
evader. In each box, we have written P or E according to whether P
or E wins with that combination, N stands for neutral. The arrows

indicate the sequence we have described.

Several remarks must be made about this description.

101




TR

oy

TR

Jt

) E P E

[
=3
o
=1

E N
—t

First, notice that we are obliged to assume that the players know
each other's control. This is not a very serious problem. One can, for
instance, say that an infinitesimal loss is acceptable to them, and that

the motion of the state during an infinitesimal time gives them the

necessary information.

Observe also that the pursuer's last move could have been replaced
by his going back to the singular barrier strategy. But then the evader
would switch again, and we could have an infinite cycling, all supposed
to be instantaneous! This is because what we have is a matrix game with
no saddle point., We deliberately exclude the consideration of mixed
strategies, which would anyway be of little help in a qualitative game,
To solve this problem, we assume that both players prefer the neutral
outcome to the risk of letting. the opponent take the better. Then, the

natural sequence of decisions is the one we proposed.

The second, and much more difficult, problem arises at this point.
The envelope barrier trajectories can be considered as falling back into
the capture region defined by the singular barrier. In fact, the P and
the N in the last row of our matrix are not firmly established. This

will be discussed in the next section.
i1) Shape of A.. We must investigate the qualitative shape of
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3 , and see whether it seals the hole.

The first fact is that, whereas the trajectories close to the roof
look like the roof and come from the capture cylinder, when we go to dif-~
ferent enough directions (larger 7Yy's ), we find trajectories that do not
come from the capture set., Moreover, we find that this surface, too, is
terminated by a cusp, where the backward computation of those trajectories

must be stopped. This cusp does not touch C .

The situation at this point is depicted by Fig. 8, where we purposely

avoided specifying what happens at the intersection of d and & .

5.8 Another Envelope Barrier, Discussion

i) The Barrier &' . If 3 is actually part of the barrier, it is

easy to find yet another smooth extension to it. Let B' be the point
where a trajectory of & is tangent to C . Note that according to what
we said in Section 5.4, B' has to lie in the region Q1 < 0 since at

that point there is a semi-permeable direction tangent to C .

This direction can be imbedded in a family, as we argued when we
constructed the curve 9 . We must just take the other sign for ¢ ,
giving a decreasing v . We can in this way compute in C a curve 9'

given by equation (5.8) but with the opposite sign:

—_—_—2
a8 _ _ ‘/(v sin § + Vw2-v2cos2g) - (Fzﬂz/vz)

(5.8a)

dv Fi

and joining along this curve, a new envelope barrier § can be con-
structed., The formulas for the y's are the same, except for a minus

ign in v .
sign i v,

In the vicinity of B! , §' blends smoothly into J , since the
v's are continuous across B' , It has been found, however, that start-
ing at the point where the trajectory through B' touches the cusp,
&' intersects & at a non-zero angle, cutting off the cusp. If we
delete both surfaces beyond this intersection, we have a simple dispersal

line of the game of kind.
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&' also intersects & , as D' intersects D . Figure 9 is an

attempt to describe this set of surfaces.

ii) Discussion . We have a system of semi-permeable surfaces ap-
parently separating a closed capture region from an escape region. But

the situation is more complicated than that.

As shown by Fig, 9, there is a common point to &' , A and the
natural barrier. From that point to J , there must exist a line of in-
tersection of J and the composite natural envelope barrier. The tra-
jectories of & npenetrate 4 along this intersection, and the necessary

condition of Section 5.5 is violated. Therefore, the set of surfaces we

have described does not constitute a barrier.

The problem cannot be solved by discarding the part of & 'above"
4 , as the existence of ¢4 and 4 itself is based upon the existence
of & . A conjecture will be presented later as to how the barrier may
look. Using the game of degree, a part of 4 would be discarded. &'
would be kept complete as a barrier, and not truncated where it inter-

sects & .

Then we still have trajectories of & crossing the intersection
with &' . However, this is not a contradiction for the following
reason: along this intersection, the "escape region" is the region out-
side of both & and &' . When seen as such, the intersection has only
trajectories leaving it., The part of § inside &' merely defines the

region for which &' is a barrier. Inside of & , &' does not exist.

This conjecture is depicted by Fig. 10,

5.9 Conclusion
Our investigation of the game of kind can be summarized as follows:

p<l The rnatural barrier and the envelope barrier together form

an open barrier terminated by a cusp. Capture occurs from

any initial condition.,

1<p<pP We have not been able to display a barrier sealing off a

region of the state space. We conjecture that an open bar-
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rier exists, made of six intersecting semi-permeable sur-
faces, plus their image in the symmetry plane. Following

these surfaces could involve a six-stage chase.

We have a closed capture region; an evader starting far
enough away will always escape, The configuration of the

barrier depends on the relative values of p and p2 :

p < po : The barrier involves the natural barrier, the en-

velope barrier, the envelope roof and the singular roof,.

pp < p: The roof no longer exists. The closed barrier is

made of the two surfaces found by Isaacs.

4
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6. THE GAME OF DEGREE

The previous chapter was concerned with the qualitative problem:
capture or escape. It yielded surfaces of discontinuity of the qualita-
tive problem or "game of degree" we want to investigate now. What are

the optimal strategles and the corresponding capture time and trajec-
tories?

6.1 The Hamilton-Jacobi Equation

i) The Problem. Let the capture region as defined by the previous

chapter be €'. When the barrier is open, ' is the whole state space,
deprived of the capture set.

*
We are looking for a pair of sirategies w*(z), ¥ (z) defined in the

capture region, and such that

) @ee V@ € Y wee
2) The equation of motion

. * *

2z = £(z,9 (2),¥ (2))

has a solution, not necessarily unique, lying in @' for

every z(0)E€ ¢

3) These solutions transfer =z(0) to the terminal manifold ¢

in a finite time, and yield a uniquely determined payoff

J(z,q?,w*) = V(z), (in our case, J 1is simply the time of

capture), verifying

min max J(z,9,¥) = max min J(z,Q,¥) = V(z)

PC) v(+) vy ()
The main tool used in the solution of this problem is a generalized
version of the Hamilton-Jacobi equation. It was first derived by Isaacs
who called it the "main equation”. His derivation can be found in [18].
Berkovitz [1] gave a more rigorous derivation, using a variational tech-
nique. Several other authors gave proofs of varying generality. A

recent one we already referred to can be found in Blaquie}e Gérard, and
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Leitmann [3] uses Leitmann's geometrical theory of optimal process, and

is similar to Isaacs' second proof.

We shall give a simple derivation, valid only under too strong
assumptions. It follows Carathéodory's method, as did Chattopadhay [10]
for a slightly different case. Our aim is to point out that the exis-
tence of a saddle point in the Hamiltonian is sufficient to insure that

the game itself has a saddle point.

We directly arrive at a sufficient condition, reached by Isaac
through his verification theorem, and by Berkovitz through a generaliza-
tion of Hilbert's invariant. Notice that Berkovitz' technique being
variational ylelds the Euler-lagrange equations. Hence the need of
Hilbert's invariant to show that they are the characteristics of a
partial differential equation. In every case sufficiency arises from

the consideration of a field of extremals. (See [5]).

ii) Derivation. We consider the more general case of a non-

stationary, integral payoff game, defined by

Z

f(zlcp)IV!t)
t

1
= K(z’t)lz€€ +f L(z,®,¥,t) dt . «(6.1)
) t ’

(o)

<y
I

where tf is the first instant such that z(t)€ €, the terminal mani-

fold (possibly time varying).

We define the Hamiltonian function

H(z, A\, @,0,t) = L(z,9,¥,t) + \,£(z,0,¥,t)

Assume that

min max H(z,\,@,V¥,t) = max minH(z,A,@,¥,t) = H*KZ,A,t)
P ¥ v

and that this extremum is attained for a uniquely defined pair of con-

trols, except, possibly, on some singular manifolds. Let these controls
be
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¢ = ¢¥(z,\,t) ¥* = ¥ (z,\,t)

: verifying conditions 1) and 2) above.

Consider the Hamilton-Jacobi equation

A

TITTW

§¥-+}ﬁé, %% : t) =0 (6.2)

Theorem: Under the above assumptions, if the Hamilton-Jacobi equation

T T

(6.2) has a continuously differentiable solution V(z,t) the

restriction of which to € verifies

V(z,t)] = K(z,t)
e

e oA W

; and if the restrictions to a suitable interval (to’tf) of the
i strategies

% 5 * oV * ov
§, q)(z"é_z-:t> W(z’az’t>

transfer (zo,to) to € at tf, then these strategies are opti-

mal in the sense of section 6.1, and the corresponding payoff is

LI "

& V(zo,to).
Ft,’
.
3 Proof: To prove this result, we first establish Carathéodory's lemnma:
% Lemma: Let the scalar function N(z,®,¥,t) have, for every z and t
. =Lerae
’ a unique saddle point equal to zero, at ©*(z,t) and W*(z,t)

3 N(z,®,0*(z,t),t) >0 ¥ 0€d, ¢ #£ o¥(z,t)

N(z, 9*(z,t),¥" (z,t),t)

0

o N(z,9%(z,t),¥,t) <0 ¥ YEY, ¥ £ y¥(z,t)

and assume that (@*,¥*) transfers the state (zo,to) to @

at tf, then the game with payoff

F . 111
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1
I = f N(z,9,¥,t) dt a(t)) €€

t
o

admits (@ ,¥ ) as optimal strategies for the initial con-
ditions (zo,to), and the optimal payoff is I = 0.

Proof of the Lemma. It is a simple matter to check that, for any t

1)

* 1
I(zqu) ,‘1',150) = /I N(Z,(p*,\ll,t) dt < O

t
0

te
f N(z,¢*,¥*,t) dt = 0

.t
o

*, %
I(Zo’q) ¥ :to)

t1
f N(z,®,¥*,t) dt > 0

t
o

%
I(zo’q)ﬂy »to)

hence I verifies (6.2) and the lemma is proved. Then,

introduce

ov v
N=L+Ft+ FZ-’i>

where V(z,t) verifies (6.2). Clearly, by definition of H*,

N verifies the assumptions of the lemma.

Next, observe that along a trajectory, N =L + %% s So that
av
P being continuous
tf ) jrtf
I= j: N dt = V(zf,tf) - V(zo,to) + s L dt
o o

and since V(zf,tf) = K(z,t), we have

I=J- v(zo,to)
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Remark:

As V 1is a function of time and state only, and not of ® and
¥, finding the minimax of I for a given (zo,to) is equivalent
to finding that of J. We apply Carathédodory's lemma to I, and

recal. that its optimal value is zero. We immediately obtain:

J has a saddle point
The optimal strategies are q# and W*

The optimal payoff is J = V(zo,to)

which proves the theoren.

In our case, £, and consequently H, is separated:

H = H(z,¥) - Hp(z,@)

so that we are assured that it has a saddle point.

It is well known that equation (6.2) can be solved using the method

of characteristics, which yields the Euler-Lagrange, or canonical, equa-

tions

s OH* _ BH, * *
ZEON T §R|@=¢ , Y=

(6.3)
. oH" |

M T leqch*,ww*

where, as we shall do from now on, we represent the gradient of V by

the symhol A. We call its components the adjoint variables.

It is interesting to notice that the semipermeable condition (5.1)

can be regarded as the limit of (6.2), where OV/dt = 0, when the

gradient of V 1is infinite. Then, the term in <Vé,f> is predominant,

and by rescaling to a finite v such that A = v/vo. and letting v

go to zero, the term in 1L disappears.

This corresponds to nonregular points of the linear theory, and to

the classical abnormal problem of calculus of variations.
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i) A Compact Form. We use representation (4.2) (seel[4 7). The

Hamiltonian is:
R . ~ . ~
H=1 7; v+ w7§ a + F7% B

the saddle point is obtained for

X X

~ r - v
a== B=-— (6.4)

where p = |?r|0 =|7§|. This yields

H* = 1-Fo + pw - 7; T
The adjoint equations are
7; =0 W; = constant
(6.5)
> = - = - .
A=A A=A - A3
\ r v v r

o}

- -
where %Vo is the adjoint vector %v at time of capture, and T the

time to go T = gf-t.
—2 2
Now, the capture set €: r = £ is a surface of constant payoff

T = 0. Therefore the gradiént of T is normal to €, which gives

A =

=
r AN =0 (6.6)
(o] Vo

|0

where p is givenby H = 0. At 1= 0, let

-
NV = pv_ €O8 B
r o o

so that H = 0 gives

1

v _cos B~-w
o B
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which is consistent with our claim that along the B.U.P. the adjoint

: vector is infinite.

ey
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! . The consequence of equations (6.5) and (6.6) is that A, and
. -
;i %b have a constant direction, 7¥

being parallel, and opposite, to
b Rr. This together with (6.4) gives the first important result on the
S ; game of degree:

: In an optimal chase, the evader runs in a straight line in the
; " physical space, and the pursuer keeps his acceleration parallel to the
% Y

L evader's velocity, describing a parabola.

We integrate the equations of motion with the calculated optimal

o controls. (The subscript zero stands everywhere for the time 1 = O,
= =t

: - -

: V=V, ¥t

. 2

3 - -3 ~ ~

Zf r=r. + VOT W8T - FB 3

2 = .

- taking into account that r = £B, we obtain

- = = T2

‘T . r=vo'r+<z-wr—F73

> - :

; we cah eliminate v, in terms of v, we find

I

. 1 .2

; ?-?T:Q(T)B Q(T):EFT-WT+,€

§ we recognhize equation (4.7a), thus identifying the time to go along

% those trajectories, the primaries, with the estimating function of the
. | previous theory.

? ii) 3-D Representation. To investigate the shape of our trajec-

tories, it is convenient to come back to the three dimensional representa-
tion.
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As our lagrangian L is constant, maximizing H or Hl is the
same problem, and the Euler-Lagrange equations (6.3) are the same as

in the game of kind.

Thus our trajectories are still solutions of (5.4). The only dif-
ferences are that v must be replaced by A, and that p, still con-

stant along a trajectory, is no longer arbitrary but defined by

1

P =35 cos B-w

The detailed treatment of these equations is given in Appendix A. It is

convenient, to express their solution, to introduce the parameters

(7224
Il

s sin B

=
n

s cos P p = —

and the equations of the trajectories and of the adjoints are:

_ £ - E
X =32 Q(t) . KX =p3
y = —’l‘vi Q1) + vt A =P ﬂ’vﬂ‘ (6.7)
2 2 I-FT
v=(t + (n-F1)") 7‘v = -PT 3

Notice that as expected
2 2 2
X+ (y-vT) = QD)

Notice also that equations (5.5) appear as a special case of these witn
3 =~/sz-w2 and M= w.

For p>1, all the primaries meet on the line d: x =0, y = vrl
where Q(Ti) = 0. In the region where the natural barrier exists, this
line is its crest. From each point of it there is an infinity of opti-

mal trajectories yielding the same capture time. This line is similar
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to the point A of the Homicidal Chauffeur game. (See [18],[171). But
for v <:NR;E§@, that is beyond the point A' +foward the lower v's,
this line is under the roof, inside the capture region. There, it
represents a line of focal points. It is known that beyond such a point
the trajectories are no longer optimal (see [7)}). We shall, later on,

propose a solution *o this problem.
We musi investigate whether tle ficic of »ruiarles presen's any
other singularity, in particular in iue case p <1 where ( does not

exist. We calculate the functional determinant:

_ D(x,y,v)

A= Em

This determinant is

2 o~
—g[FT-W g e 4 Q(T)] - _1_[&_ FQ(1) + w(q-F'r)] + v ik
v 2 v|. .2 v
v v
(ﬂ-FT)z £ 1-F1 £
A= 3 Q(7) 3 T~ v
. v v
1 -F1
- £ (rFo Q@ S @EeW (P + v 1ET
v

We first look at the case n-Ft =0, v = §, which gives

W ) £-F géll 0
a=|o0 T 1| = - Q(v"’) (n-w)
0 Q(z) 0

For M # Ft, we add some linear combinations (involving the coefficient

t/N~F1) of some lines to others, yielding the same value:
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é (Ft-w) %(Ft-w)(n-FT)v 0
A = [n-F7 -t 0 =-Q5ﬂ (q-w)
0 T 1

The primaries correspond to 0 >w, thus this determinant is zero only
for Q(t) = 0. For p <1, it is never zero, the field has no sin-

gularity.

The second question to ask is whether this field fills the whole
space. It was seen in Section (4.4) that for every (x,y,v) there
corresponds a T, and onee T 1is known, it is straightforward to

deduce from (6.7) that

7 =,/v2-§2 + F1

and T being a root of
2 2 2
X+ (y-vT) = Q1)

2 .2
ve see that xz/Q('r)2 is greater than one, and consequently that v -§

is always positive.

6.3 The State Constraint

i) The Concept. Having identified T along the primaries with the
estimating function, it is natural to check whether the corresponding
trajectories penetrate the capture set, as suggested by the behavior

of the barrier.

2
Calculating r we find

242

= (1) = T[;} Fr - FO-w) T + ((-".—w)2+ §2-F£)'r+2z(n-w)J
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as expected, r = g for T = 0. But the polynomial P(t) can have

a positive root. Actually, since P{0) 1is positive, it has two such
roots or none. The limiting case corresponds to a trajectory tangent

to C.

A whole portion of the field must be discarded because of this fact.
It would correspond to trajectories penetrating € and leaving it again
before capture. This is sketched in Fig. 11, in which the shaded region

is left unaccounted for by the present construction.

b

FIGURE 11. The Primaries

This problem was discovered by J. V. Breakwell and Boardman; sece
{4]. The solution is their concept of "safe contact," that appears in

other games as well. (See [6] and [20]).
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Let us consider the general game (6.1). We have to discard trajec-
tories because they penetrate ¢ at a nonzero 7. If this happens in
the usable part of the capture circle it raises no problem since in that
region we know another strategy that forces immediate capture anyway.
Let us consider the case where this happens in the nonusable part of
the capture set. Then, the region where we have no trajectory is adja-
cent to this nonusable part of €, where E can prevent immediate

capture.

In that part of @, E can in particular maintain the state at the
surface of the capture set, without penetrating it. One can in principle
chose a coordinate system such that (¢ be the set z, < @, and the

"safe contact condition" is:
z_=f (z,¥,¥) =0 (6.8)

(We restrict ourselves to a first order constraint. See [8].) and this
can be viewed as a relation that ¥ has to satisfy. We assume that

the optimal paths include a leg of this type, leaving € the first

time they meet a trajectory of the n-dimensional game doing so. We
check a posteriori that this allows us to construct a field of extremals
filling the previously empty region, and to which the verification thec-

rem applies.

Consider the reduced game in the (n~1) first state variables on
the surface of €. We know its semsitivity vector at the point where
the trajectories already known leave €: since V(z) has to be
uniquely defined, it is the projection of the n-dimensional sensitivity
vector at the same point. (See the "jump condition" in [3] and [9]).
Therefore, we can integrate constrained trajectories backward from these

points, together with their adjoints.

Then, at each point of a constrained path, we can compute a in-
coming extremal of the unconstrained game, recovering the missing ad-
joint by the main equation H = 0. If this construction actually yields
a field of trajectories filling the void region, we have reached our

objective. According to Issacs' terminology, the extremals of the n-
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dimensional game constructed in this way will be called the "tributaries"

R0

of the constrained trajectories.
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Notice the obvious similarity between the construction and the one
that led to the envelope barrier. The curve 9

Gy

now appears as a natural
limit of the constrained game, and the envelope barrier itself as the
corresponding family of tributaries.

iy e ey

About this construction, we prove
the following simple result.

Definition. The state constraint (6.8) is saild to be singular if the
equation

fn(z"l’*(z,%), W*(Zy7\) =0 (6.88.)

T Ay

MUl SRTe L fowe bl e o A S ma g b s e

cannot be solved for )h in terms of the (n-1) first )k's, and
z. For a further discussion of the terminology and of the relation

with known results of calculus of variations, see Appendix D.

s AaB PR IR Ly e P S

Theorem. If the safe contact condition is not singular, the state con-

é

straint is reached (and left) tangentially,

"N

N ‘I\
= .. = o0 0 !
Proof. let z = (zl,. , zn_l), A ()1 )h—l)’ and ¥ denote a

control V¢ satisfying the safe contact condition. The dynamics

; of the reduced game are !

z =20
F ‘ Its optimal strategies are given by the functions qP(Q,A) and
|

V&, N verifying

n-1

min mgx(L(gy‘#’»ﬁ) + Z )‘(fk(g,(%:";)) = fa(qu)o,{l;o)
¢ Vv 1

e

n-1 N
£y ARG (6.9)
1
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and moreover, this quantity is Ho = 0.

th
The n~ component of A in the n-dimensional game, at any

point of the constrained game is given by H* = 0, where

n
H* = min max [L(z,Q,¥) + 2{ xkfk(z,qLW)> = L(z,@*,w*)
9 Vv T
n
+ Z xkfk(z’(p*,\"*) (6.9a)
1

Under our hypothesis, we have a simple way to find a solution

of this equation. Let %h satisfy

Il
o

1 (2,0%(z,N), vz, N

For this A, fk(z,Q*}W*)
Consequently, (6.9) and (6.92) are identical, and yield identical

?k(z,q#,w*) for every k < n,

implicit functions. Once z, and %h are known:

PCEN = oz, N
A0 A D
Vv (z,N) = ¥*(z,N

and therefore

H*

~0 * %
- f | =
H + kn n(z,cp W) =0
which proves that this A 1is the solution sought. Then, the

equality of tiz optimal controls on both arcs proves the theorem.

The proof can easily be generalized to a multivariable state con-
straint. It does not specify whether the point considered correspends
to an incoming or outgoing trajectory of the n-dimensional game. It

therefore applies to both.

ii) The I.R.G.:locus of Tangency Points (See [4]). In our case,

there is no such thing as singular controls, and the theorem applies.
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We look, therefore, for the locus of the points where a primary is tan-

gent to (@. This will be given by a simultaneous solution of

I T T Y

1 .23
P(t) = 7 Fr

- F(f]-W>'r2 + [(n-w)2 + gz-m]n 24(1-w) = 0

Pr(v) = 2 K 4 2F(rwv e ()’ 4 £ - B = 0

The algebraic condition for this two polynomials to have a common root

R Lk 2 1) Chrgtn s

is that their resolvant be zero. This gives, after some calculations:

N [(gz - g Fz)z

- smgz] -2 ¥R Ps v am = 0

> T
P R -

2
where { = 7y-w. This equation is of second degree in { , and could
thus be solved for ¢ in terms of . Using, then, the suitable root

of P'(7) = 0 would give the desired locus.

But this technique gives very complicated formulas we prefer to use

a different one: Take the common root Tc as the independent parameter.

The simple operation

P(1) - P'(1) = O

T

immediately gives 71, and placing it back in P'(7) = 0 we find &:

TR T

. 1 23
! 3 Fr

0

2
FTc + 2
(6.10)

[+

Fr_+ 48
2 F£2

[}

[/
1]
[

(Ft + 217,)2

TR T oY

and it can be seen by direct substitution that these formulas give

A= 0, For T, = 0, cquations (6.10) give

n=w E=F¢
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which are the coordinates of B. The curve 9 1s the constrained trajec-

tory corresponding to Tc = 0.

The locus of tangency points lying between 9 and the B.U.P., who are
tangent at B, is therefore tangent to the B.U.P. It turns out to be
extremely close to P and numerically very difficult to separate from

it on part of its length.

It is clear that at T, = 0, formulas (6.10) give

gﬂ:o

dg
If we notice that the B.U.P. 8 is given by 1 = constant, this shows
that the locus of capture points of the tangent trajectories is also

tangent to 3 at B.

For p>1, let Ti be such that Q(Ti) = 0. Clearly, the tangency
point corresponding to Tc = 11 must be at the point of intersection
of the line (¢ with € TFor p =1 the locus of tangency pointsis tan-
gent to the symmetry plane, and it intersects it for p > 1. However,
constrained trajectories arriving at a point of this locus with Tc > T
must be discarded because the corresponding primary would go through (

before capture occurs, and thus would not be optimal.

iii) The I.R.G. Constrained Trajectories. We already know that the

safe contact condition gives V independently of ¢ as

cos (@ - &) ; cos 6

2

sin (@ - Wy’ cos> 6

Zi-

and that the corresponding dynamics are cqguations (5.7). The Hamiltonian

is

Al = -7-}-6- [,\ﬁz-vz cos2 6 + v sin 9] - r[-?:—e sin ¢ - "\v cos tp] + 1
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The optimal control is thus

P 2

: X
Lol in o = )@ _ )V 6 )?
. sin ¢ = —V cos P = - e o= —E' + v

which is consistent with our claim that qP = ¢ at every point. The

corresponding Hamiltonian is

: A

. A f 2

L H°=7€<vsin6+ w—vzcosze)—Fc +1=0
4

3 and the path and adjoint equations for the constrained game
) A
i 1 2 2
; 6 == (v sin 6 +./w —v2 cos 9) - F —g—
' £ v o
A
4 V=-F—
c

5 \ v cos 6 v sin 6 + afw —v2 2 ¢]
9 6 £ Jﬂ_

)?
2 2 2
AN =-2A sine v sin € + -v cos 6H-~v +FT6

v ,
9 Vo

Finally, comparing this Hamiltonian with that of the three dimensional

3 game, we obtain
| A TR
6 |2 2 -2 2 2]
< ¥ -V cos 6 =wp - v?xr cos 6 p = ,\/7‘1' + =

e o Aealiaacy

which can be rearranged 30 as to yield a perfect square that gives

d
3 )9 v cos € AG w

7\= P = =—
r
£ J@ cos2 0

:8 J\\'2-v2 cos? @

e o b )

~CT
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We vecognize the relations we had along D. But here o 1ie no longer
arbitrary, and integration of the adjoint equations is needed to provide

)b and )V° Thelr initial conditions are obtained by placing (6.10) in
(6.7).

The constrained trajectories actually lie between the curve of tan-
gency points and . They go around the end of D in a state constrained
form of Isaacs' iswerve maneuver. Due to the fact mentioned earlier, the
resulting two-dimensional field does not always fill the empty region of

the capture cylinder. Figure 12 is a scale drawing of the capture cylin-
der surface, for p = 1.

The corresponding three dimensional field of extremals, if it does
not fill the whole void left by the primaries, still gives a smooth ex-

tension of the previous field. It contains trajectories coming from the
external side of &.

For p 2 %Z , the curve 9 closes, and this construction succeeds
in filling the portion of the capture region non accounted for by the

primaries interrupted at (. Therefore, it gives the complete solution

of the game.

6.4 Corner Condition

For 1 <pX< Py, We expect that for starting points with small v,
the trajectories ofi the game of degree, similar to those of the game of
kind, will first go away from the capture cylinder, and then reach the

field already known and follow it. Hence the need for a corner condition.

Terminology. We are interested in the conditions that must hold on a
surface S where two fields of extremals join. S locally divides the
space in two regions. Let the incoming trajectories be in region -, and
the outgoing one® in region +. The corresponding sensitivity vectors

- ¥ R
ara A and A. Let n be the normal to S pointing in region +,
so that by definition:

{n, £@ ¥ ) >0

[
[
(=2}
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A simple result is the following "jump condition":

Proposition
- +
A=A +0on (6.11)

Proof. V(z) 1is assumed to be uniquely defined in the whole space. From
its values on S, its directional derivatives in a plane tangent
to S are uniquely determined. And these are the projection of

A in that plane. This proves the proposition.

Notice that the argument depends on the existence of the
directional derivatives of V in S, and thus on the existence

of an open neighborhood of 2z in S. It does not hold as such

on the boundary of S.

As a consequence of this proposition, once S, and thus
n, 1is khown, we can determine )T, the main equation for re~
gion - allowing us to calculate . This is equiva}ent to saying
that we can solve the game with terminal surface S and terminal
payoff V(z),S added to the integral part of the performance in-

dex. We still need a condition to determine 8.

Assumpt;gg. Assume that in a neighborhood of § we have:
-
{n, £@ W) >0
(6.12)
+ '—
<n, £@%,¥ ) >0
Namely, none of the players can prevent the state from crossing
S Dby keeping his optimal strategy of region™. Then, we have a

result similar to the classical corner condition. (See [5] and

[9l).
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Theorem. Under condition (6.12), the corner condition is

o= (6.13)

Proof. Assume one of the players decide to switch earlior, on a surface
translated from S by ©&£. Then, because of (6.12) the other
player is obliged to switch also. Taking (6.11) into account,

the change in payoff, to first order, is
[
BV = {(N-N),88) = -ach, 84

If & 1is not zero, this quantity has the sign of &, and thus
there exists a small enough &4 such that the variation in pay-
off has that sign. Therefore, the player whose advantage it is

should have switched earlier. This ends the proof.

At this point, a new, typically game-theoretic, phenomenon occurs:
assume that one of the two inequalities (6.12) does not hold. Then the
player who can prevent the state from crossing S 1is also able to pre-
vent his opponent from taking advantage of the potential variation of
payoff we just pointed out. Therefore, a switching surface S can occur
with

(n, £ WP O @ <o (6.14a)
or

<n, f(fﬂ—>\'/+)> <0 x>0 (6.14b)

Before we investigate what new relation replaces (6.13), we make the

following remark, concerning a game with separated dynamics:

Proposition. If the dynamics are scparated, one at most of the two

inequalities (6.12) can be falsec.

Proof. By simple calculation we have:
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<{n, £, = {n,h (W) = <o, g (@)D
by definition of n, we have

CHE{CAD) (n, h(¥) > <, (@)

v
o

IO (n, (¥ > <o, g(@HD

v
o

Assume that

{n,£(97,9-)> <0 (n,h(¥)) < <, g(e)
together with the previous two inequalities yields

<, 209,00 = G, bV - Gg(@)) >0
and similarly for the other case. This proves the proposition.

The indifference condition. Assume, for definiteness, that

<n, £(9°, V)Y <0 (6.14a)

Then, according to what we said, we can have, on S, O <O0.

If upon reaching S the pursuer changes his control but the evader
does not, the state drifts back into region -, The pursuer must switch
back to qf, causing the state to reach S again. The sequence is
then repeated, inducing "chatter". We assume a convex vectorgram so that
chatter can always be replaced by, and cannot be better than, a simple
strategy. Thus the pursuer must choose a control @ such that the

state follows S:

<n, £(@,¥)) =0

we call (5,w-) the traversing strategies and (q¢,¢+) the penetrating

strategies. S can be ‘the switching surface of the optimal game only if
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the traversing strategies still optimal, namely if, as on an optimal
trajectory, the rate of decrease of V is equal to the value of the

Lagrangian with the corresponding controls. Notice that because of (6.11)
- ~ - + ~ -
<7\ ’ f(q),‘lf )> = <7\ ,f(@y‘l' )>

so that the Hamiltonian is uniquely defined and our condition can be

written

HOV,9,0) = L@V ) + N, £(,97)> =0
But we know that

min H(A ,@,¥ ) = H(N,9 ,¥ ) =0 .
¢

We therefore have this complement to the previous theorem.

Theorem: (The Indifference Condition). If condition (6.12) does not
hold, but }nstead (6.14a) for instance, then at a corner point we
must have & < 0 and in addition one of the following two condi-

tions must hold.
L 9=9

or

- Arg minH(N ,Q,¥ ) non-unique.
)

The first possibility corresponds to the switch envelope, a phenom-
enon first discovered by J. V. Breakwell and A. W. Merz in Isaacs' homi-
cidal chauffeur game [20]. The trajectories reach S tangentially, and
then, to the choice of the evader (or of the pursuer for the case (6.14b))
the state can either follow the switch envelope, or leave it on a trajec-

tory of region +.

The second possibility has an interesting interpretation when the

Lagrangixn is independent of ¢, in the minimum time problem for instance.
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Then P (Q in the case (6.14b)) must have an affine set as part of
its boundary, and A must be normal to it. 1In particular, if P
lies in an affine set §F but has only relative extremal points in-its

boundary, (a line segment, a conic section) then N  must be normal to

5.

For a two dimensional game, the only proper subspace is a straight
line, so that the possibility we have just discussed can occur only if
one of the players has a linear vectogram, and we recognize Isaacs'
equivocal phenomenon. We see that in the higher dimensions, this is
not required. In the isotropic rocket game, for instance, an equivocal
surface of this type could occur with 1y parallel to ;i and thus

normal to the plane of P.

Let us finally notice that our description (Chapter 5) of how
two semipermeable surfaces can join is the limiting case of a switch
envelope. The unicity assumption we had to make merely ruled out an
equivocal junction. There does not seem to be any reason why this could
not occur. We did not describe it because we did not need it, and be-
cause it is clear how the present more general theory would apply. The
case (6.13) leads, for barriers, to a smooth surface, since the adjoint

is normal to it.

6.5 The Switch Envelope

i) The Indifference Condition. In our game, we already know a

line where a corner occurs: The envelope junction. If we regard the
barriers as limits of the trajectories of the game of degree, we con-
clude that we must find a switch envelope passing through that line.
The choice of strategies, traversing or penetrating, would rest with

the evader, and ¢ be negative.

Let the switching surface be a surface ‘X given as

v = v(x,y)

Then, its normal is
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(We have used the traditional notation p here, not to be confused with
the parameter of our game. This notation appears only in the present

subsection). According to (6.11)

A, = x; - ap

7\; = 7\; - aq (6.11a)
N =N +a

v v

and we have two relations. The main equation of region - and the in-

difference condition which, here, is a tangency condition

H(N ,9 ,¥ ) = =F6 4+ wp - v7\; +1=0

A
- <n, £(¢ ,¥ )) = ~F 29_ (py-aqx) (6.15)
v O
w + + 2 2 A;
+F[”7‘x+q7‘y'°‘(p +q )] ~vq + F—= = 0

where

Jp+2—2(1(p7\: + q7\;) + sz(p2 + q2)

+ J
7\8 = 7\9 a(py - ax)
- o g )2
0 = ,/a+2 - 2oz(?\‘; BYTaX g’\ - 7;) + az[-————(mzq'\) + 1]
v v
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Conceptually, the parameter <& can be eliminated between the two equa-
tions (6.15), leaving a first order partial differential equation on

v(x,y).

Actually it can be seen that this elimination can be avoided, by
directly finding the equations of the characteristics of this system of

equations. If the two relations are written

I
o

H(X,y,v,p,q,Q) =

I
<

G(x,y,v,p,q,a) =

define

[x] = OH oG _ 9G oH
= 0x oo~ Ox du

and similarly for [y], [v], [P] and [Q], and then the characteristics

have the same equations as for a single partial differential equation:

ax _ dy _ dv - -dp - -dq —d
™) Q] = plP) + qlQ) ~ [xJ + ptvl ~ YT + qlv] ~

and an additional relation is needed to propagate . It is easy to

derive as

We now have a problem of Cauchy: pass an integral of (6.15) through 4.
It is known that unless ¢ is a characteristic, this problem has a well

defined solution.

1i) Shape of X. Two major difficulties occur in trying to actually
compute an integral of (6.15).
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First, on ¢, A is infinite, so that only its direction is known.

This is, 1in principle, compensated for by the fact that we have another
piece of information: we know the direction of %T, namely v . Thus
we can choose the direction of n, normal to J, in such a way that the

limit of 7: for points tending to J be v But this program is
exceedingly difficult to carry out. It would have to be done by itera-

tion on the position of n as a function of the point of J considered.

In addition, the problem is made even more difficult by the fact
that %ﬁ is not known explicitly as a function of the state. It is
computed by completely separate means, together with the state along a
trajectory. Thus, what is known numerically only, is a family of func-

tions z(Tc,Tl,Tz), A(TC,Tl,T2) where Tc is the tangency 17, T, and

1

T, are the parameters along the state constrained and the unconstrained
trajectories. A computation in the (Tc,r ,T2) space makes the quan-
tities p and gq become complicated functions of the variables that we

cannot express explicitly either.

For these reasons, numerical integration of our partial differential
equation did not appear to be feasible within the scope of this disserta-

tion. But some interesting results can be found about the shape of a

solution.

The way the problem of Cauchy is solved is the following: at each
point of J the partial differential equation defines a cone of possible
normals to the surface. The requirement that it be normal to ¢ deter-
mines this normal. Then the necessary initial conditions are known to
integrate the equations of the characteristics. At the end J of 4,
the second requirement disappears, and all the directions satisfying
the equations can be used. Consequently, the solution of (6.15) has the
desired shape, providing a field of extremals similar to the singular sur-

face for those arriving in the vicinity of J.

We can also show that this solution actually lies in the region we
conjecture, between the cnvelope barrier and the roof. Equations (G.11a)
are identically satisfied along a solution. They express the fact that
the projections of Af and A on the tangent plane to K are equal.

Therefore, by continuity, the projections of v and v on this plane
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at § must coincide. The vectors v being normal to the two barriers,

this is possible only if the tangent plane to X 1lies in the dihedron

defining the capture region.

Finally, notice also that the directions of the vectors v imply,
as must be, a < O,

Figure 13 is a schematical cross section of the barriers by a plane

v = constant.

an

FIGURE 13. Position of the Switch Envelope

Because we have not been able to compute this surface--and conse-

quently not the field--cither, we cannot carry further the solution of
this game.

Some questions arise about the possibility that the construction

proposed is part of the solution of the game of degree. We shall try

to answer them and to present a reasonable set of conjectures.

6.6 Conjectures

A first question arises about the trajectories of the (y,v) planc.

There, we know that the optimal trajectories are a set of parabolas,
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deduced from each other by translation parallel to the y-axis. But this
i poses two problems: These trajectories belong to the field of primaries,

and we now pretend that they are imbedded in another field, making a

™ At L

; corner with the first one. And furthermore, this corner occurs on a

switch envelope, so that these parabolas should be tangent to K. But

AT sk

it is obvious they have no envelope, so that they cannot be tangent to
X, unless this surface itself is tangent to the symmetry plane. This
last possibility is ruled out by the fact that ¢ belongs to K, and,

except for p = 1, 1is not tangent to the symmetry plane.

We conjecture the following answer to these questions. The switch

R RNk e

g envelope surface K intersects the (y,v) plane at a nonzero angle,
and not =n/2 either, along a line £, passing through A'. The trajec-
tories of the field - arriving tangent to K at @ come from the region

x > 0, as the trajectories of the envelope roof indicate, thus leaving

R S e A

‘ between them and the symmetry plane a region not accounted for by this
field.

AT O

g Along £, the field of incoming trajectories is interrupted. In

other words, due to the discontinuity of the normal of K, the restric-

tion of V(z) to K is differentiable in a closed half surface only.
% ) Thus, the argument that the component of A in the tangent plane to K

is continuous does not hold any longer. What does hold is that the com-

apce i

ponent tangent to £ is continuous. This gives one less condition.

On the other hand, for a trajectory arriving at £ the evader can-
not prevent the state from crossing X, again because of the angle in
that surface at that point. Therefore, the requirement that this trajec-
tory be tangent to K does not persist either. Therefore, using the
degree of freedom left in determining %r, we can, from each point of

£, generate a one-parameter family of extremals extending from the one

-

PR i e A e

tangent to X to the parabola. This fills the void left by the previous

field. This singular roof now appears as the natural limit of this con-

TR

struction, giving strength to the conjecture.

Al tnren

Notice that the fact that )T—)r must be normal to £ and that

N must generate the parabolas as optimal trajectories still does not
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allow to compute £ independently of K, as any adjoint N contained
in the (y,v) plane generates the same trajectories. But we conjecture

that this line lies in the region y < vt Q(Tl) = 0, so that the

1)
field of primaries is interrupted between its singularity and capture.
The parabolas, then go through (, but are imbedded in a field with no

singularity there.

We shall uow present a conjecture giving a tentative solution of
the problem of the termination of the singular carrier, left unsolved
in the previous chapter. We have seen that there is a point B' where
a trajectory of the singular surface 4 is tangent to the capture cyl-
inder. Extending from B' into the capture region, there is a locus
of points where the trajectories incoming to X are tangent to @.
From each of these points, we can generzte retrogressively a constrained
trajectory, and incoming to these a three dimensional field of tribu-
taries. Qualitatively, the constrained trajectories look like 9D' and

the tributaries like the trujectories of §&'.

Let C be the point wﬁere the trajectory of 4 through B' is
tangent to the cusp on J.r From this point, the envelope barrier §'
cuts the trajectories of KW Similarly, the field of tributaries just
described will interfer witﬁ the field of trajectories incoming to K.
Thus, a dispersal surface will occur, a locus ofpoints where the time

to go in both fields is equal.

The trajectory of 4 through B' belongs to both fields, and C
will thus belong to the dispersal surface. Therefore, this surface
intersects 4, and, as the rest of its field, &4 must be interrupted

along that line.

Here again, V{z) must be uniquely defined on the dispersal sux-
face. The only way in which the field on one side can have an infinite
gradient and not the field on the other side, is for the dispersal sur-
face to be tangent to the barrier at their intersection. Figure 14

sketches this situation.
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FIGURE 14. Singular Barrier and Dispersal Surface

Since following 4 does not enable the evader to avoid capture,
there is no contradiction in having an optimal trajectory of the game
of degree have a common point with the barrier. This is similar to what

happens in the Homicidal Chauffeur [20] and other games.

This construction still does not fill the whole state space with
extremals. Another field would join on the one just constructed,
possibly through an equivocal surface generated from the end of the
singular barrier. The common trajectory to 4 and &', through B
and C, also would have to be considered aé it is the end of the
barrier §', and the other edge of the "hole" left in the proposed

barrier.

6.7 Conclusion

Our investigation of the Isotropic Rocket Game can be summarized

as follows:

*

The linear theory shows that for p < 1, capture always occurs,
in a line not larger than an estimating function we were able to con-

struct explicitly. However, this time is not always optimal.

A more classical approach led tc the following situation:

p < 1. We exhibited a composite field of extremals made of part of the

primaries, a safe contact, and its tributaries. Althcugh no
analytic proof is available, our computations indicate that
this field probably fills the space, with no conjugate point,

_and thus provides the complete solution to the game.
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1 <p<p,- VWe have been stopped in our investigation by an excessive
technical difficulty in the integration of a partial dif-
ferential equation. Since any sufficiency argument rests
upon the construction of a complete field of extremals, we
can only propose conjectures. We have not been able to
display a closed set of barriers. Furthermore, we have
proposed a construction that would give trajectories going
around the known barriers. Consequently, our tentative
conclusion is that capture occurs from any initial condi-
tion. For outer regions of the state cpace, an optimal

chase would then involve eight stages or more.

Py <p <p,. We have found a set of semipermeable surfaces forming a
closed barrier: it defines a closed capture region. If
the game starts outside this region capture will never
occur. If it starts inside, capture will always occur.
For a small portion of this region, the optimal trajectories
seem to involve the same singularity as in the case 1 < p <

that we have not been able to compute.

Py

p2 <P We still have a closed barrier, of simpler configuration
than in the previous case. The same field as in the case
p <1 seems to account for the whole capture region, again
providing the complete solution.

Conclusions

Information Structures. We have seen that Pontryagin's direct

method can be extended to various information structures. In the basic
form, the pursuer knows the evader's control for a time € in the future.
Letting € grow to infinity gives the case where the whole tuture con-
trol of the evader is known. Giving a fixed finite value to ¢ leads

to a discrete estimating function T(z,€). It is possible, in partic-
ular, to check directly that for a given point =z, T(z,€) 1increases

as € is decreased. Pontryagin proposes a construction, the alternating

integral, that gives an estimating function valid for every positive €.
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This suggests an investigation of the limit of the pursuit process pro-

posed as € goes to zero.

We modify somewhat Pontryagin's process by considering the minorant
game or lower e¢-strategy where the players choose their controls sequen-
tially. Then, using results of Fleming and of Friedman on the convergence
of the game as € goes to zero, we have a well-defined notion of contin-
uous strategy that lends itself to the following analysis. We have given
an explicity characterization of the strategies obtained by this varia-
tion of Pontryagin's technique. This allowed us to show that they have
a well defined limit as € goes to zero, that we were able to characterize
in a way reminiscent of the Maximum Principle. An interesting result is
that for a wide variety of games, this limit strategr of the pursuer is

independent of the control chosen by the evader at current time.

Optimality. Since in the unsymmetric approach taken, the pursuer has
some knowledge of the future control of his opponent, it is possible

to seek a pursuit strategy optimal against that control, which is more
than usual saddle point condition. The strategy proposed by Pontryagin
achieves this goal provided that th2 estimating function is the optimal
time to go in the usual sense. We therefore investigated the optimality
of this pursuit time. We found a condition under which there is an ¢
small enough so that this time is locally optimal with the corresponding
e-strategy. Then, using our definition of a continuous strategy, we
proved that for that 1limit, the estimating function always has this local
property. Some of the intermediate results derived for these two proofs

are of interest by themselves.

We have described the phenomenon by which the global trajectories
can still fail to be optimal. Undecrstanding this mechanism gives us
direct means of checking the optimality of the trajectories computed in
any instance. We also derived a condition under which we are assured of
this optimality. Unfortunately, it is not explicit and not much simpler
than the direct check. However, it allowed us to derive several more
restrictive sufficient conditions, including an earliexr one by Gusyatnikov

and Nikolsky.
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Nonregular Points. The previous gnalysis emphasized the importance of

Pshenichnyi's nonregular points. We proved that they are points where

the gradient of the estimating function is infinite. We distinguished
between two kinds of such points. The first kind was shown to be associated
with Isaacs' concept of a barrier. The second kind is not as well under-

stood. An explicit example was nevertheless given to show that it can occur.

Multistage Games. The construction proposed by Pontryagin naturally

leads to the consideration of multistage games. It was seen that most

of the concepts introduced in the continuous case carry over to the dis-
crete case. Our main interest has been in a slight modification of the
resulting discrete theory: the system-theoretic formulation where the
controls are unbounded and capture is defined as point coincidence modulo
a subspace. In that case, the constructions performed take a very simple
form, and explicit criteria were given on the coefficients of the matrices
involved for capture to be possible with each of the three main informa-
tion structures. We also considered the case where the capture subspace
is invariant under the free dynamics of the system, and generalized to

the vecfior valued controls case an earlier strong controllability theorem

by Kalman.

Isotropic Rocket Game. In the second part, we investigated an example

considered by Isaacs: the Isotropic Rocket Game. An object having an
acceleration of constant magnitude tries to get within a distance £ of
an object having a velocity of constant magnitude. We generalized Isaacs'
formulation by assuming that the chase occurs in the three dimensional
physical space, but immediately proved that an optimal chase occurs in

a fixed plane, and has, in a 'suitable set of reference axes, linear dyna-
mics. The state space is then four dimensional, as the components of the
pursuer's velocity must be considered together with the relative coordin-
ates of the evader with respect to the pursuer. The linear theory was
applied to that representation. It shoved, in particular, that when the
unique parameter p of the game is smal.er than one, capture occurs

from all initial conditions. This is a gonod approximation of the com-
plete situation in that the limiting valu:2 of the parameter we found is

very close to one. However, this game exhibits the typical phenomenon
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where the linear theory fails to yield the optimal solution. Therefore
we could not conclude from that theory that for p > 1 the evader would

escape, and we found later that this is probably not true.

Game of Kind. We used a reduced three dimensional state space to pursue
the analysis of this game using Isaacs' generalization of the Hamilton

Jacobi theory. We first investigated the game of kind. We emphasized

- the concept of local cone of semipermeable directions, and gave a geometri-

cal construction of that cone. In particular, we were led to the considera-
tion of a new type of semipermeable surface generated from one point by
that cone of directions: the singular surface. We also used that concept
to give a simple description of Isaacs' envelope barrier concept. We saw
that this envelope barrier can be considered as a particular application

of a more general result as to how two semipermeable surfaces can join at

a non zero angle in a barrier: the envelope junction.

Game of Degree. We finally investigated the game of degree, for which

we proposed a derivation of the gener 1lized Hamilton-Jacobi equation by
Carathéodory's technique. The game of degree involves a safe contact
first pointed out by Breakwell and Boardman. It is similar to Isaacs'
envelope barrier. We introduced the concept of singular state constraint
and proved that if a state constraint is not singular, optimal trajec-
tories reach and leave it tangentially. This result can be shown to
imply a result by Weierstrass about the same question. We also derived

a general corner condition for differential games. It was found that it
can take two forms: either the same requirement as in the one player op-
timization that the adjoint vector be continuous, or, if a certain in-
equality is not satisfied, the indifference condition. This condition
itself can take two forms, one having Isaacs' equivocal phenomenon as

a particular case, the other one being Breakwell's switch envelope.

The detailed solutions for the Isotropic Rocket Game was discussed
at the end of Chapter Six. A detailed description of the barrier was
given at the end of Chapter Five. We left the problem unsolved for a

emall range of the parameter p. The solution in this interesting case
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seems to be very complicated. We conjectured that it involves at least

an eight-stage chase, with two corners and two safe contacts.
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Appendix A

EQUATIONS OF THE EXTREMALS

3 .

i We start with the simplest, four-dimensional description of the game
é, 5{=-U+W

3 X

; :X'=-V+W

‘% ' (a.1)
: . Al
B :

F'% V=F'Y

and we introduce the reduced coordinates

vV = VU2+V2

x = = (VX - vY) (A.2)

PR ]

[
1l
| I

t (ux + vy) .

T

: We define the angle A between the two systems by

; sin A

<l

, cos A =

<<

and introduce new control variables @ and ¥ by

FX sin A + FY cos A = F cos @3 FX cos A - FY sin A

F sin @ ;

— e . - = N
Wy sin A + w, cos A = w cos V{; Wy COS A Wy sin A = F sin V¥ ;

s
4
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so that ¢ and ¥ are the angles defining the position of F and w in
the new coordinate system, all angles being measured clockwise from the

y axis,

Differentiating (A.2) and placing (A.l) in it, and taking the last
transformation into account, we obtain the equations of the game in

the three-dimensional representation

y

X = =~F - sin @ + w sin ¥
y = F % sin @ + w cos ¥ - v (A.3)
v = F cos P 3

and- we want the equations in cylindrical coordinates

r sin @

"
Il

(A.4)

y = r cos 8.

We differentiate (A.4), place (A.3) in it and solve for r and 6 . We

obtain

e
i}

w cos(y - 9) - v cos 6

D e

F w v o,
= - = , —~ si - - A,
S sin @+ — sin(y - 8) + ~ sin 6 (a.5)
vt = Fcos @ .,
Now, we need the equations rclating the various representations
of 9J = \ [we call J the value of the game to avoid confusion with the

coordinate V of (A.l)]. Let J Dbe given by

o= (X, 8, 0, 0) = 3y(x, 0y V).
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)
3 - 3w
v

Placing this and the other trivial partials of (A.

obtain, after some rearrangement

o/
<
<<

aJl BJZ Ox an dy BJZ ov
=2 = e o h e e o — e
% T % T % %73y ox 3v ox
N aJl 5J2 Ox . 5J2 ay . an ov
Y T 3y 3 dY dy oY dv oY
from which it follows that
A = —1-(\'1\ - UA,)
X v X Y
A = S(uA_ + vA)
y viox y
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2) in BJl/BX, we

1
= =(V_ + ny)

= X ’
= S(-Un_ + \)\y)

(A.6)
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ﬁhich simply checks that (kx, ky) and (AX’ AY) are the same vector

17 expressed in their respective coordinate systems. By the same
2]

means, we compute AU and Av

i

AU = - .‘_’;\L.PY)LX_(HX_X)M+
A" v \Y \4

<ic

A, = X gy X Wy, Y,
v v v v

from which it follows that

N, = %(mu + VA) (A.6a)

which means the dot product V . iv is conserved in the change of

coordinates , We obtain also, after a rather lengthy calculation

Q
>

<o
+

<
il

1 2 2
5 (R - kky) + A,

<

while (Ao’-)

is obvious from (A.6),

Finally, we make a purely geometric transformation on the radius

vector r and on a perpendicular axis

rA = X\_+ ¥y
r X Y
(A.8)
A, = - XA
6 ykx y
hence, obtaining other forms for p and ¢
232
2 2 8
=y
0 T ((\080)
Ay o
2= 5+l
v v
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This justifies the notations used in the main body of this dissertation

Ve are going to find the equations of the extremals. The Euler-Lagrange
equations are more easily integrated in the four-dimensional representation
But as we know that the absolute orientation in the geometrical space is
ignorable, we shall always assume that at the instant of capture, =0, we

have A =0, or U =0, V = v, Consequently, the expressions for A, and

Av which we have are

>

u

1\. = ly
A
D 2]
by = By = -7
fay
1\, = )\vo = .\v

and we shall use these relations in the equations of the trajectories
because our ultimate aim is to have their equations in the three di-

mensional system, as a function of the parameters Xgr Yoo Voo lxo’ Ayo’
at T = 0, As the system is time invariant, the same equations can

Le used from any such set of "final" conditions, even if they do not
correspond to capture, In particular, we have used them to compute
trajectories in coming to the various singularities in the game, The

Hamiltonian is
— - - 14 g g A
H = AXU AYA + AX“X + AY“Y + AUPX +AFy 1
and its maximized form is

HY = —A‘U - AYV + - Fo+ 1 = -FO+ wp - vlv +1=0,

The adjoint cquations are
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where

1104

" 2 2
o B * Kvo

a
o l‘lOAX * XVOAX *

(¢}
I

Ax and AY will be used to

dynamics, with the optimal

du
at

dv
d7

Define In(T) as

The above equations give

(=
1l

-5
n

T n
1(r) = j';,-(L-dg

Ax = constant
AY = constant

<

-AYT + lvo

= «psz - ZCOT + O'g i

denote the final value of Kx and Ky. The

controls, are, for the velocities

N T
-U=F?=F—W—

. Ay AT+ Ay
.V = F— =2 F—m—————
o o(T)

¢)

_F(AXII - poIo)
~F(AY11 - lvolo) + v, .
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- The other two state variables are then given by
T
. x=x+SUdT-—A3wr
o p
T AY
Y = vy +SVdT—-—wT.
° o P
We integrate by parts
T T
J Udt = U =~ f TutdT
o] o
and similarly for V we fird
AX
X = xo-w—pT+ UT+F(AX12-L1011)
A (4.9)
= - w =X -
Y A wp'r+ VT+F(AY12 }‘ch1)'

The Ik's can be expressed analytically. Clearly, we have

2 -
poT + po -

- d¢ - 1 .
. Io = S \i o 3 = b log
o Pegs - c £+ 0 P = %
Then I1 is obtained from the remark that
sz -ecI = o{7) -6 & x(7)
1 oo : o

and I  1is obtained from the fact that

2
d¢ g0l & = P 5 E) % 0555 o o(¢)
so that
1 2
I, = —= [oT+ c¢cI -01I1.
2 2p2 o1 oo
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The expressions for U and V can be made simpler by introducing, in-

stead of 1
(o}

t
[1]>4

(lVoAX - uo‘AY)Io

and it gives

v = -f)-z [AK(T) + AL(T)]
' (A.10)

vV = -%2 [AYK(T) - AXL(T)] V.

X, y, and v are obtained placing (A.9) and (A.10)in (A.2), with the
expressions we have given for Io’ Il’ and Iz. The adjoint are ob-

tained using (A.6)

A, = %[%vo + FL(7) ]
ky = %[AYVO - FK(7) ] (A.11)

A, - %’{[%x(r) - voAY]'t‘ -5 [cox( )+ (ighy = Agh, )210] ¥ }\Vovo}.

o

The general formulas for x, y, and v are exceedingly complicated, We
have done the computation using the intermediary quantities X, Y, U,
and V, This completes determination of the extremals in the general

case,

However, our formulas break down for c, = P9, because Io is
no longer defined. This happens when the vectors (po, lvo), and (AX’AY)

are parallel, and in the case of the primeries in particular.

Assume we have

g
o]
B = 35 &
° P (a.12)
06
lVo = '5_'AY
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Placing this in the equations for AU and AV’ they become

ty = T )
A, = AY(T+——)

o, - prl k(1) = lo, - pt| - o

Then the velocities are given by

qu A - pT

at = pI-—pT|

av By P m PT
dt P |2, = PT|

and integrating, we find a formula valid for all T's

a
i

A
X
~-F - K(T)
p

<
I

-F— K(T) + LA
P
Then, we must consider the integrals
1
X = S U(s)ds
0
integrating first from T =0 to T = oo/p, then for T > oo/p
g

A T A
TS =2 X = F—}g{ K(—ps)ds = F_%
pr o P

) P ’
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> =2
p
2 - 2
A0 A ‘2 Y
Xp = -F?[—z—g—- S(ps-zoo)ds] Ff—)é[p---2c'r+-5-]

0o/p

We notice that these two expressions can be written as a single formula

X, = F-ﬁ—[(r - E—-)K(T) - 10 ]

202 p

o]
1l

A
b F Eiz[("c - %Q)K('r) - TGO]- v,T .

Now, if we take the corresponding expressions for the general case,
place (A.12) in them assuming that I is defined, we find identically
the same equations, Consequently, one can use the same formulas,
checking first whether co - po # 0, and assigning any value, say

zero, to Io if c, = p06 .

Finally, since it gives simple formulas, it is worth deriving the

equations for the reduced coordinates in the case of the primaries

where kvo =M, = 0., Placing this in our formulas, we find
X = x - > (w+ F'%)T
Y = yo--jg—y(w+%'£)’r+ v T
V = - F %? T+ vo .

We apply to this the transformation (A.Z), and introduce the parameters
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ﬁ ] x, = £ sin'B AX = psinB
: P yo = £ cos B AY = pcos B
; Vo = 8 ?\VO = 0

and the intermediary quantities

¢ = s ein B

. 1 = s cos B ;

? N we obtain for the three-dimensional representation
S
- b ¢
= x = 2Q(7)
: - FT
3 y = -D-V—-Q(T)+VT
3
3
3 - 2 2
n v = [£% +(n - F7) ik

:
Ly . 2
g where Q(T) = F17/2 - wt + £,
? The adjoints are
]

= 54

. % = Py
} i
| A = pA=FT (4.15)
| y v
1 ‘ N = _p'rﬂ_—._FI.
5 v v
E | It is interesting to notice some simple combinations
:
i ko = pET
3
R
E
; 155
b - =




and H = 1+ (w =~ q)p =0, yielding

These are all the equations we need in the last two chapters for the

theory as well as for numerical computations.
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Appendix B

COMPUTATION OF §

We want to compute a curve ¢ on the surface & . Let us review

how the various elements of the problem are given,

The curve 9 is obtained by numerical integration of Eq. (5.8).
We consider it as parametrized by the value s of the velecity. Once
a point of D is known, we have analytical formulas for the trajectory
of & tangent at that point and for the adjoints along it, as a func-
tion of the time to go 7T, from the point of & to ?. Therefore, a
point of & is represented by its parameters (s, Tl). Jis defined by
an initial point and a field of directions on &, This direction is
obtained, at any given point of &, by solving numerically Eq. (5.11a)
for ¥ . This angle allows us to compute y with Hl = 0, This vector

can be placed in the dynamics to obtain the direction £(v,z).

We cannot simply use an integration routine with that direction I
for two reasons: first, due to round-off and truncation errors, the
curve would quickly drift off the surface &, Even if this was avoided,
it would not give the parameters of the computed point on &, As we
need these parameters to compute vb and subsequently v, we would have

to do some extremely tedious interpolation to find them,

For this reason, we directly look for #in the form T, = Tl(s).
Using s as the independent variable is convenient because the incre-
ment on s 1is then chosen arbitrarily, and (5.8) integrated once up
to the new value, The rest of the integrating procedure is done by

varying Tl’ using analytical expressions to obtain the corresponding

pOint zZ = (x, y, v)o

We want to copy a classical integration routine of numerical
analysis. Such techniques use the quantity dTl/ds that we do not

have., But more precisely, what is really needed are such expressions as
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61‘1 = 4= Os (B.l)

where several such increments, with varicus arguments of the function
dTi/ds, are averaged in a suitable way., In our case, instead of com-

puting dTl/ds, we compute a vector y normal to the intersecting sur-

face, thus to 3, 871 is obtained by computing the value 70+ 8T1

1
of Tl where the trajectory of parameter s°-+ Ss

intersects the plane
normal to ¢ through z®, This is done by solving for T, in

1
ve® =0 (B.2)
where
8z = z(Tl, s®+ Bs) - z° .

Since we have analytical formulas for E(Tl), we can differentiate
the dot product with respect to Tl’ and thus solve (B.2) in an effi-

cient way with Newton's technique., Notice that for ¢ the angle between

the trajectory of & and the tangent plane to the roof is large

enough so that this technique is quite accurate,

In our case, computing ¢ 1is a rather longoperation, We have
tried to keep the number of times we compute it as low as possible.
For that reason, we have used an Adams method of order four, started

with a Runge Kutta method of order four,

Ve give, thereafter, scale drawings of the crest (computed by the
same program) and of g forp=1and p = 1,001,
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Appendix C

ISAACS' NOTATIONS AND OURS

Isaacs 105-116 Isaacs 244-254 This Work

Xg - X - X
Yp = ¥ - Y
u - U
v - A
r - oT
U - v
X X X
Y y y
v v v
- 8 )
- V1 Vx
- Vo y
- V3 vy,
- U ve
P Py g
Pg Py
VxE = -Vy - Ax
Vyp = Vy - Ay
v, Ay
vy - by
Js2 + 52 s s
3 4
S5 - pr+p
Q(T) () (7)
- a a
- ¢ c
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3 Appendix D

REGULAR STATE CONSTRAINT AND A RESULT BY WEIERSTRASS

TR

il

T

In Section 6,3 we defined a regular state constraint and show that

if an optimal path contains such an arc, it is reached and left tangen-

R

tially. This result obviously applies to the control problem, the
one-player game, Similar problems were studied in calculus of varia-

tions, and it is interesting to relate the two approaches.

The problem of jeining an unconstrained arc with a constrained

DS AT N M AT

one was considered by Weierstrass, and appeared in his lectures as
early as 1879 at least [5]. The problem he deals with is his paramet-

rical form of the calculus of variations. In control theory language,

LA Se T Vs ek

it can be stated as a problem in a two-dimensional state space with the

e

simplest dynamics

xl = U1
1 . (Dp.1)
= Xo = Uy
g and the objective is to minimize
5
: J = AS F(xl, Xgr Uy, Uz)dt
- where F 1is assumed to be of class ¢3 in all of its arguments (for
2
our purposes, C~ suffices).
é Weierstrass wants the integral to depend only on the geometrical
§ path followed, He shows that the necessary and sufficient condition
- for this to be true is that F be homogeneous of degree one in (Ul’ Uo).
i
1-‘(.\-1, Ny KU, ku2) = kF(.\'l, Xp0 Uy U ), k>0,

1’ 2
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and a consequence of ‘this is that there exists a function .

Fy(xgs %95 Uy, U)

such that
2
F = U.F
U1U1 271
Fyu. = ~U T (D.2)
172
2
F = U F
U2U2 11
where 2
F _ J°F
u.u. ~ BU. SU.
i i ]
i = 1,2
J = 1,2, i

We add that the second partial derivatives of a homogeneous function of
degree one are homogeneous of degree minus one; thus, F1 is homogeneous

of degree minus three in (Ul’ Uz).

We intvoduce Weierstrass' excess function, which, because of the

homogeneity of F can be written as

E(xl,xz,ul,uz,ul,uz) = Ul[FUl(xl,xz,Ul,Uz) - FUl(xl,xz,Ul,Uz)] +

+ UZ[FU2(X1,X2,U1,U2) = FUz(xl)xz)Ul)Uz)]

assuming that the controls are the cosine and the sine of the same

angle 7y (we can always chose Ui + Uz = 1 Dby rescaling and using the
homogeneity of F), and using the mean value theorem, one can express

E Dby mecans of F1 . The form found shows that if
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Fl(xl, X,, €0s T, sin Y) = 0 ¥Y

then the relation E = O can be verified only if

which shows that the boundary is met and left tangentially., The problem
of calculus of variations is said to be regular if (D.3) holds at
every point, Notice that from the homogeneity of Fis (D.3) is equiv-

alent to
F(x, x,, U, U) # 0 if (W +v?) £ o (D.3a)
17 T2? Ty T2l d 1 2 ) :

We shall assume that the coordinates have been chosen in such a
way that the boundary of the state space is x2 =0, We want to
compare the condition (D.3) with ours, which can be expressed, in this
case, as follows: Let the optimal control, obtained by minimizing

the Hamiltonian, be given by

¥

Up o= Uy xps Ay 2y)
* —

U2 = UZ(Xl’ Xy ll, kz)

and we ask that the equation

be solvable for kz, or in other words, that there exist a function A,

<

such that
. . . . = |
Uz[.\l, Xp) )\1, Az(}.l, Xg) }\1)] 0. (D, l)

We form the Hamiltonian
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H = AU + + F(x_, x
Uy AU, Flxy, xp, U, U,),

As U1 and U2 are unrestricted, the minimum must occur at an interior

point, thus given by

OH
o, =Mt =0
(p.5)
OH
.6-[};=}\2+FU2—0.

Moreover, since we want a minimum, and not a maximum, we must have

[IPRTX

i:: . (D.5a)

Equation (D.5) must be used to determine U, and U,, (D.5a) allowing
to choose between two solutions, First, notice that multiplying the
first equation in (D.5) by U, the second by U, and adding, and then

making use of Euler's identity rfor homogeneous functions, we find
= + = 0
MU AUt Uy Py, + U Fy, MU+ AUy + F

showing that a consequence of (D.5) is H = O, This is not necessarily

possible for any pair (kl, kz).

Let us differentiate (D,5) at a fixed point (xl, X,), using (D.2)
b4

U F. du, - U U,F. dU -dA

171 17271772 1

[SV ) -]

(p.6)

2
-U1U2F1dU1 + UlFldU2 -dlz .

The first consequence is that this system can be satisfied only if

Ujd\) + Uydh, = O, (D.6a)
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which shows that U1 and U2 are defined only as long as kl and lz
satisfy a given relation, Equation D.6a, together with (D.5) gives
dH = 0 and is consistent with our previous remark that H has to take

a fixed value, namely zero,

We assume thus that ll and KZ are varied simultaneously according
to (D.6a). Then the two equations (D.6) are redundant, But we can

arbitrarily decide to choose Ul and U2 such that

2
U+ U, = 1 (D.7)

since their ratio, giving the direction (Ul’ Uz), only matters. Then,

we have

U dU; + UpydU, = O (D.7a)

and placing that in (D.6), we find, making use of (D.7)

ou

[
1
o]

(p.8)

4
AV

1]
=7

where U2 is now a function of x X,, and A,

1)
This relation could have been obtained starting from the beginning
with

e
Il

cos T
(D.1a)

“
]

sin v

instead of (D.l), and having y as only control, But this approach
yields less information. It does not clearly show the existence of a
contraint or the A's, and the cquality H =0 must be borrowed from

the general theory to establish (D.8).

We see that under condition (D.3), U2 is continuous in A,. More-
over, from our assumptions on the regularity of F, under condition

(D.7) F1 is bounded from above. Therefore, in view of (D.Sa), we
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have, for some fixed m

ou, )
gi; = - E‘—' <m<O . (D‘9)
: 1

This still does not prove thai U2 = 0 has a solution, because

the added condition on the A's can restrict the possible values of

kz to a finite interval, or to a semi-infinite one, such as 1} 6 < o

2= "2
o
(or lz > 12).

Assume that U2 is defined for some (ll, kz). Vary lz by dkz,
and we see that we can find the corresponding variation d\, from (D.6a),
except when U1 = 0, In that case, from (D.7), U2 = 1, Assume that

2

the allowable A, 's have an upper bound of kg . Then, as A, increases

2

o 2
toward lz, U2 decreases toward Ug =+ 1, And as u2 canmot be larger

o
than one, we necessarily have u2 = =1, Similarly, if xz has a lower bound,

it corresponds to U2 = +1, This, together with the continuity of Ué

and with (D.9), shows that the equation U2 = 0 always has a (single)

root in kz‘ Therefore, our condition (D.4) is satisfied.

The conclusion is that Weierstrass' condition implies ours, which
is thus more general, However, it must be noticed that the earlier is
much more elegant than the latter in that it can be readily checked

from the data of the problem, without actually determining Uz(xl,xz,kz).

Similar simple conditions might exist for the control problem but
we did not investigate this question, However, it is interesting to
notice a typical case where our condition is not met: when a control
determined by the state constraint otherwise has a "bang-bang" behavior
(and except if the constraint happens to imply an extreme value of the

control). A typical example is the Dolichobrachistochrone problem.

In these cases, the additional adjoint is actually provided by
singular arc conditions. This shows the close relation between singular

solutions and the question of how a state constraint is joined on,
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